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1. SI Movie 1: Deformation and fracture of the DN in response to uniaxial strain applied at the boundary and
increased in steps of 1%. The bond occupation probability of the stiff (black) network was set to p1 = 0.62 and
the bond occupation probability of the flexible (blue) network was set to p2 = 0.60.

2. This Supplementary Information Document.

IMPACT OF VARYING THE INTER-NETWORK INTERACTION ON THE MECHANICS OF THE
MODEL DN

In the main manuscript, we set the elastic interaction between the two networks α3/α1 = 1.1, with the assumption
that one could think of α3 as an effective spring for the springs α1 and α2 acting in parallel. Here we relax this
assumption, and discuss results for α3/α1 ∼ 0.001−1. We find that varying α3/α1 does not affect the main conclusion
of our paper namely that: the secondary flexible network modulates the mechanics of the composite DN far more
effectively when the primary stiff network is near its rigidity threshold. However, α3/α1 can be used to tune the
micromechanics of the network.

In figures 1 and 2 we present data for α3/α1 = 0.01. These figures show that normalized Young’s modulus and
strain at maximum stress show significant variation with p2, when p1 is 0.62 but not when it is 0.80, as in the main
manuscript. In addition, the rigidity percolation threshold on the DN remains the same. In figure 3, we present the
variation of the normalized shear modulus with p1 for different values of p2 for two cases; when α3/α1 = 0.01 and
when it is 0.001. The rigidity percolation thresholds for a given p2 does not depend on α3/α1. This is expected
because the percolation threshold is set by the balance between the degrees of freedom and constraints in the system.
Finally, varying the coupling between the networks does impact the values of the Young’s modulus, the maximum
stress, and the strain at maximum stress as seen in Fig. 4. A weaker coupling (smaller α3) allows for more non-affine
deformations of the DN and thus leads to a decrease in its Young’s modulus (rigidity), maximum stress (strength)
and an increase in the strain at maximum stress (extensibility).

These results show that in addition to the axial rigidities of the filaments in the two networks α1 and α2, the
coupling strength α3 can modulate deformations and relaxation of the network. Note, however, that the bonds
corresponding to α3 are present only if the corresponding bonds in the two networks, are both present, i.e., there is
no independent source of disorder in the coupling between the networks. Therefore, changing α3 can only change
the shape of the modulus versus bond occupation probability curves and not the rigidity percolation threshold of the
composite network for small deformations of the DN when there is no breaking or buckling of bonds.

IMPACT OF VARYING THE RATIO OF FILAMENT STRETCHING STIFFNESSES OF THE TWO
NETWORKS

For large deformations that result in breaking and buckling of bonds, we found that changing α2/α1 will change the
shape of the modulus versus strain, and stress versus strain curves, and consequently the values of maximum or peak
stress, and the strain at maximum stress, but the qualitative trends remain unchanged. To illustrate this, in Fig.5,
we show results from simulations where we set the above-mentioned ratio to 0.2 instead of 0.1 as in the manuscript.
Further, we ran these simulations for p1 = 0.7 in addition to for p1 = 0.62 and p1 = 0.8. In Fig.5, panels (a), (b),
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FIG. 1. The normalized Young’s modulus (Y/Y0) shown as a function of the applied tensile strain, γ, for the bond occupation
probability of the stiff network p1 = 0.62 (left figure) and p1 = 0.8 (right figure). The flexible network has a bond occupation
probability, p2 as shown in the legend. The parameters are: α2/α1 = 0.1, κ/α1 = 0.004, and and α3/α1 = 0.01.

FIG. 2. The stress σ shown as a function of the applied tensile strain, γ, for the bond occupation probability of the stiff network
p1 = 0.62 (left figure) and p1 = 0.8 (right figure). The flexible network has a bond occupation probability, p2 as shown in the
legend. The parameters are: α2/α1 = 0.1, κ/α1 = 0.004, and α3/α1 = 0.01.

and (c) show the modulus as a function of applied strain, and panels (d), (e), and (f) show the stress as a function of
applied strain, where the open symbols correspond to a ratio α2/α1 of 0.1 and the closed symbols to 0.2. Note that
while changing the value of α2/α1 led to small quantitative changes (larger rigidities and load bearing capability for
α2/α1 = 0.2), it did not change the qualitative trends reported in the manuscript. To further crosscheck this, we also
examine the peak or maximum stress the DN can withstand before it starts to soften, and the strain at maximum
stress. We show these results in Fig.6. As expected, we found that the peak stresses are larger when α2/α1 = 0.2
than when α2/α1 = 0.1, but the qualitative trends remain the same. Similarly, the qualitative trends for the strain
at maximum stress also remain the same, although there are small quantitative changes.

IMPACT OF VARYING THE BOND OCCUPATION PROBABILITY OF THE STIFF NETWORK

We first show data for values of p1 close to the rigidity percolation threshold of the primary network (pc ∼ 0.58
in our simulations) with p2 set to 0. In Fig.7 below, we show the data, averaged over five runs, for the normalized
shear modulus, G/G0 as a function of |p1 − pc| for the two extreme cases: p2 = 0 and p2 = 1. Note that while for
both p2 = 0 in Fig.7 (a) and p2 = 1 Fig.7 (b), G/G0 first increases very slowly (when |p1 − pc| is 0.001 or less),
then more rapidly, the increase spans many more decades for p2 = 0. This is also clearly seen in difference in the
logarithms of the normalized shear modulus for p2 = 1 and p2 = 0, shown in Fig.7 (c), as a function of |p1 − pc|.
As expected very close to a phase transition, this difference is large when |p1 − pc| = 10−4 (and ∼ over 5 orders of
magnitude difference in the normalized shear modulus), and then decreases steadily as we move away from pc; when
we reach |p1 − pc| = 10−1, the two normalized moduli differ only by an order of magnitude. These trends are cor-
roborated data for the corresponding data for the peak stress for large deformations leading to fracture shown in Fig.8.
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FIG. 3. The normalized shear modulus (G/G0) shown as a function of the occupation probability, p1, of the stiff network for
two different α3/α1, 0.01 (left figure) and 0.001 (right figure). The flexible network has a bond occupation probability, p2 as
shown in the legend. The parameters are: α2/α1 = 0.1 and κ/α1 = 0.004. The applied shear strain is 0.05.

FIG. 4. The normalized Young’s modulus, Y/Y0, and stress, σ, as functions of the uniaxial tensile strain γ applied at the
boundaries. In this figure, p1 = 0.62 and p2 = 0.60, and α3/α1 has values as shown in the legend.

Next, we show data for four different values of p1, 0.62, 0.63, 0.7, 0.8, from near pc to far away from pc. We show
the variation in dG/dp2 as a function of p2 in Fig.9, the normalized Young’s modulus vs. strain in Fig.10 (a-d), stress
vs strain in Fig.11(a-d), peak stress vs p2 in Fig.12 (a), and strain at maximum stress vs p2 in Fig.12 (b). In all
these figures. we observe large variations in the DN’s properties for p1 = 0.62 and 0.63, and and these variations are
attenuated as p1 is increased, with rather small variations for p1 = 0.8. These results corroborate the main finding of
the paper that the tunability of network mechanics and fracture properties is most striking when the primary network
is near its rigidity percolation threshold.
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FIG. 5. The normalized Young’s modulus, Y/Y0, and stress, σ, as functions of the uniaxial tensile strain γ applied at the
boundaries, for three different values of p1. The ratio α2/α1 has values as shown in the legend.

FIG. 6. The peak stress and strain at maximum stress as functions of bond occupation probability of the flexible network p2.
Panels (a) and (b) show the peak stress when α2/α = 0.1 and 0.2, respectively, while Figures (c) and (d) show the respective
strain at maximum stress. The data presented represent three values of p1 shown in the legend.
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FIG. 7. Figure shows the normalized shear modulus (G/G0) as a function of the deviation from the bond occupation probability
p1 from the rigidity percolation threshold pc(∼ 0.58) for p2 = 0, for the two extreme cases of p2 = 0 in (a) and p2 = 1 in (b).
In figure (c), we show the difference in the logarithm of the normalized modulus values for the occupation probabilities shown
in (a) and (b).

FIG. 8. Figure shows the peak stress as a function of |p1–pc|, where (pc ∼ 0.58) for the two extreme cases of p2 = 0 in (a) and
p2 = 1 in (b). In figure (c), we show the difference in the logarithm of the peak stress values for the occupation probabilities
shown in (a) and (b).

FIG. 9. Figure shows the derivative of normalized shear modulus G/G0 as a function of the bond occupation probability p2,
for different values of p1 (shown in legend).
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FIG. 10. Panels (a - d) shows the normalized Young’s modulus Y/Y0 of the SN (black circles) and DN (remaining data) as a
function of the uniaxial tensile strain γ which is applied at the top boundaries, with p1 set to 0.62 (a), 0.63 (b), 0.7 (c), and
0.8 (d).

FIG. 11. Panels (a-d) shows the stress σ developed in the SN (black circles) and DN (remaining data) as a function of the
uniaxial tensile strain γ which is applied at the top boundaries, with p1 set to 0.62 (a), 0.63 (b), 0.7 (c), and 0.8 (d).
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FIG. 12. Panels (a) and (b) respectively show the maximum or peak stress σp and strain at this maximum stress plotted
against the bond occupation probability of flexible network p2.


