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I. SIMULATING POLYMERIC SPINODAL
DECOMPOSITION

Polymeric spinodal decomposition was simulated in
both two and three dimensions. The details of the simu-
lations in both sets of dimensions differ because the simu-
lation in two dimensions was aimed at the efficient gener-
ation of many time steps worth of data to test the ability
of the Gaussian process regression models to make ex-
trapolative predictions.

A. Three Dimensions

Spinodal decomposition was simulated in ten symmet-
ric, binary, three-dimensional polymer blends with aver-
age compositions spanning the range 0.05 < ¢ < 0.5 in
increments of A¢ = 0.05. To do this, the following di-
mensionless form of the Cahn-Hilliard equation [1] [2] [3]
was solved numerically using a finite difference scheme on
a 256 x 256 x 256 cubic lattice with periodic boundary
conditions
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where ¢ is the volume fraction of one of the blend com-
ponents, F' is the Flory-Huggins-de Gennes (FHAG) free
energy functional, §/d¢ is a functional derivative, x is the
Flory-Huggins interaction parameter, with y, its value
on the spinodal curve, N is the degree of polymerisation
and kV2¢ describes the energetic cost of gradients in
composition. The value of y, is given by
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The FHAG free energy functional describes the free
energy the system as the once homogeneous composi-
tion becomes non-uniform as a result of phase separation
[1] [4] [5]. We note that the specific form of the FHAG
free energy that we used, as shown above, does not im-
pact qualitatively on the evolution of the microstructure.

1) AT
0.05 7.8125 x 1076
0.1 1.5625 x 10~°
0.15 3.1250 x 1077
0.2-0.5 1.2500 x 10~*

TABLE I: Average composition dependence of the time
steps used in the finite difference scheme. Smaller time
steps are required for smaller volume fractions to avoid
numerical instabilities arising from the logarithmic
terms in the free energy.

The dimensionless time and space variables, 7 and x,
were related to real time and space, ¢t and «, through
7 = D(xs — X)*t/1? and x = /X — xsz/l where D is
a mutual diffusion coefficient and [ is a characteristic
molecular length scale, typically of the order of nanome-
ters. The step size used in the finite difference scheme
was Ax = 0.5. The time steps are shown in table I.
For each composition we set N = 50, k = 1/18 and
(x — xs) = 0.0254. The cubic lattice was initialised such
that the volume fraction at each site was ¢ = ¢+ 4§ where
0 is a uniformly distributed random variable in the range
—0.01 < § < 0.01. In each simulation, the microstruc-
ture of the blend was saved at integer values of 7 in the
range 0 < 7 < 39.

B. Two Dimensions

Spinodal decomposition was simulated in a single sym-
metric, binary, two-dimensional polymer blend with av-
erage composition ¢ = 0.5. To do this, the following
dimensionless form of the Cahn-Hilliard equation was
solved numerically using a finite difference scheme on a
256 x 256 square lattice with periodic boundary condi-
tions
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where ¢ = 2¢ — 1. This particular form of the Cahn-
Hilliard was derived using the Ginzburg-Landau free en-
ergy functional and the de Gennes square gradient coef-
ficient in the limit of a small interaction parameter [6]
[5]. The dimensionless time and space variables, 7 and
x, were related to real time and space, t and x, through
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Onsager coefficient and R, is the radius of gyration, typ-
ically of the order of nanometers. The spatial and tem-
poral step sizes used in the finite difference scheme were
Ax = 0.5 and A7 = 1 x 1073, We set N = 10® and
(x — xs) = 0.001. The square lattice was initialised such
that 1) = 14§ where § is a uniformly distributed random
variable in the range —0.01 < § < 0.01. The microstruc-
ture of the blend was saved at integer values of 7 in the

range 0 < 7 < 75.

II. DETAILS ON THE COVARIANCE
FUNCTIONS

The following summary of the covariance functions we
used is based on information from Refs. [7] and [8].

Isotropic covariance functions are functions of | — x
- they only depend on the magnitude of the difference
between two inputs. The isotropic squared exponential
covariance function is given by
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where o and [ are both hyperparameters, which specify
the shape of the covariance function. The hyperparame-
ter o is a scale factor and [ is a characteristic length scale.
The length scale is a particularly important hyperparam-
eter because it determines how rapidly the functions f in
the prior distribution of functions vary. The squared ex-
ponential covariance function gives rise to very smooth
functions, with infinitely many derivatives. Such smooth
functions are unrealistic in many applications, leading us
now to consider the Matern class of covariance functions.

The isotropic Matern class of covariance functions are
given by
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where v is a positive parameter, I'(v) is the gamma func-
tion and K, is the modified Bessel function. The Matern
class of covariance functions simplify for half-integer val-
ues of v. Since when v = 1/2 the Matern covariance
function gives rise to very rough functions, and when
v > 7/2 it is hard to distinguish between the functions of
the different Matern covariance functions, v is often set
tov =3/2or v = 5/2. In the case where v = 1/2, one ob-
tains the exponential covariance function. The isotropic
exponential covariance function is given by

kp(x,z) :JQexp<— kc—liavﬂ) (6)

Finally, we consider the rational quadratic covariance
function. The rational quadratic covariance function is
equivalent to adding together many squared exponential
covariance functions with different length scales. The
isotropic rational quadratic covariance function is given

by

x— a2\«
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where « is a hyperparameter that determines the rela-
tive weighting of the large and small length scale varia-
tions. It follows that the rational quadratic covariance
function gives rise to smooth functions that vary across
many length scales.

III. SUPPLEMENTARY RESULTS
A. Average Performance of All of the Models

Figures 1 - 3 show the average performance of the
Gaussian process regression models at predicting the sur-
face area, curvature and connectivity, respectively, from
the original scattering data. In each figure, the top panel
corresponds to the training set size of twenty training
points, and the bottom panel corresponds to the training
set size of thirty data points.
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FIG. 1: The average performance of four Gaussian
process regression models at predicting the surface area
from the original scattering data. In the top panel, a
training set size of twenty was used. In the bottom
panel, a training set size of thirty was used. It should
be noted that the y-axis in the top panel has been
truncated to make it easier to compare to the y-axis in
the bottom panel.

FIG. 2: The average performance of four Gaussian
process regression models at predicting the curvature
from the original scattering data. In the top panel, a

training set size of twenty was used. In the bottom
panel, a training set size of thirty was used. It should

be noted that the y-axis in the top panel has been
truncated to make it easier to compare to the y-axis in
the bottom panel.
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FIG. 3: The average performance of four Gaussian
process regression models at predicting the connectivity
from the original scattering data. In the top panel, a
training set size of twenty was used. In the bottom
panel, a training set size of thirty was used. It should
be noted that the y-axis in the top panel has been
truncated to make it easier to compare to the y-axis in
the bottom panel. The y-axis in the bottom panel has
also been truncated to make the bar chart easier to
read.



B. Performance Summary of the Best Models

The performance of the best model for each value of ¢
in the bottom panels of Fig. 3 in the paper and Figs. 1 -
3 here is shown in detail in Figs. 4-7, respectively. Each
box plot summarises the values of the RMSE calculated
over one hundred instances of training and testing.

%1073
2l o i
o
)
1.5+ ,
T 8
. |
| 4
= | o °
~ ‘ o 5
| o
o 8 Q [¢]
0.5 F o —
8 g & ¢ N
T | (o) |
=l e N N
02 TTTER e s %
0.06 0.1 0.15 0.2 0.25 0.3 035 04 045 0.5
¢

FIG. 4: The performance of the best Gaussian process
regression models at predicting the volume from the
original scattering data for each value of ¢.
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FIG. 5: The performance of the best Gaussian process
regression models at predicting the surface area from
the original scattering data for each value of ¢.
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FIG. 6: The performance of the best Gaussian process
regression models at predicting the curvature from the
original scattering data for each value of ¢.
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FIG. 7: The performance of the best Gaussian process
regression models at predicting the connectivity from
the original scattering data for each value of ¢. It
should be noted that the y-axis has been truncated to
make the box plots easier to read. As a result of this,
some of the outliers for ¢ = 0.25, 0.3 and 0.35 have been
cut out.

IV. DEVELOPING THE NEURAL NETWORK

The neural network was set up and trained using
Scikit-learn [9]. The training procedure was the same
as that used for the Gaussian process regression mod-
els. On top of that, we made use of Scikit-learn’s ‘stan-
dard scaler’ function. Before training the neural network,
we determined the values of its hyperparameters by per-
forming a grid search. The search was over the hidden
layer sizes 128 and 256; the activation functions ‘logis-
tic’, ‘tanh’ and ‘relu’; the regularisation values (alpha)



0.0001, 0.001, 0.01 and 0.1; the solvers ‘Ibfgs’, ‘sgd’ and

‘adam’; and the maximum iteration values 250, 500 and
750.
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