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I. TENSION VS. EXTENSION

FIG. 1: Dimensionless tension as a function of extension for the first five bending modes of a

membrane with Ā = 1 and κ̄ = 0. Labeled points correspond to the shapes in Fig. 6 of the main

text. At the maximal extension of h∗/a = 1.0554, the membrane is a catenoid and its permissible

tensions are given by the eigenvalues in Table 1 of the main text. One of the n = 1 branches

diverges as h approaches zero, while every other branch has finite tension at zero extension. (Inset)

Zoomed-in version of the points near h/a = 0.35.
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II. SELF-INTERSECTING SHAPES WITH NEGATIVE EXTENSION

Much like the classical Euler elastica, we observe that our shapes are mathematically

allowed to take negative extensions. In such cases, these surfaces self-intersect and are

unstable. Some examples of such shapes follow. Note that some of these shapes are not

symmetric about the z = 0 plane, even if the mode number is odd.

FIG. 2: A selection of self-intersecting numerically computed solutions of various mode numbers to

the membrane shape equation with negative extension. For each plot, h/a = −0.2, Ā = 1, κ̄ = 0,

the horizontal axis is z/a, the vertical axis is r/a, and the axisymmetric surface is produced by

revolving the curve about the line r = 0.
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III. SINGULAR PERTURBATION THEORY FOR THE CASE OF κ̄ 6= 0

FIG. 3: Numerically computed (blue) dimensionless mean curvature and leading order asymptotic

approximation (red, eqn (37) of the main text) for a catenoid-like shape with κ̄/κ = 0.5 and

Ā = 1. Outside of boundary layers of width O(
√
κ/µ), the mean curvature is exponentially small.

(Left) A membrane with extension h/(2a) = 0.52769 and µa2/κ = 402. (Right) A membrane with

h/(2a) = 0.52769739 and µa2/κ = 3.85× 104 (the two curves are nearly indistinguishable).

FIG. 4: Numerically computed perturbation to height profile r1/a (blue) along with approximations

valid outside the boundary layers (red, eqn (40) of the main text), inside the boundary layers (green,

eqn (42) of the main text), and in the whole domain (black, eqn (44) of the main text) for the µ > 0

case. Parameters are the same as in the previous figure. The area under the curve approaches

−a2Ā/L0 and constrains µ.
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FIG. 5: Numerically computed dimensionless tension as a function of ε = |L− L0|/L0 (as defined

after eqn (27) of the main text) on a log-log scale (blue), for the positive tension case with Ā = 1

and κ̄/κ = 0.5. The slope of the dashed red line is −1. The logarithms have base 10.

FIG. 6: Numerically computed (blue) dimensionless mean curvature and leading order WKB asymp-

totic approximation (red, eqn (37) of the main text) for a catenoid-like shape with κ̄/κ = 0.5 and

Ā = 1. As |µ| increases, the solution oscillates more and more. (Left) A membrane with ex-

tension h/(2a) = 0.5274 and µa2/κ = −660. (Right) A membrane with h/(2a) = 0.52767 and

µa2/κ = −2.36× 103. The two curves are nearly indistinguishable when µ is this large. Note that

for both plots, cos(L0

√
µ/κ/2) is not close to zero.

5



FIG. 7: Numerically computed perturbation to height profile r1/a (blue) and leading order WKB

approximation (black) composed of two parts: a response to a rapidly oscillatory forcing (red, eqn

(51) of the main text) and a remainder (green, eqn (52) of the main text), for the µ < 0 case.

Parameters are the same as in the previous figure. The area under the curve constrains µ.

FIG. 8: Numerically computed dimensionless tension as a function of ε = |L− L0|/L0 (as defined

after eqn (27) of the main text) on a log-log scale (blue) for the negative tension case with Ā = 1

and κ̄/κ = 0.5. The slope of the dashed red line is −1. The logarithms have base 10.

IV. MERIDIANS OF THE κ̄ = 0 SURFACES

Here, we plot the meridians r(z) of the zero Gaussian curvature modulus axisymmetric

surfaces shown in Figs. 6, 8, 9, and 11 of the main text.
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FIG. 9: Meridians of the surfaces with Ā = 1 and κ̄ = 0 (cf. Figs. 6 and 13a of the main text).
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FIG. 10: Meridians of the thick surfaces with Ā = 1.1 and κ̄ = 0 (cf. Fig. 8 of the main text).
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FIG. 11: Meridians of the thin surfaces with Ā = 1.1 and κ̄ = 0 (cf. Fig. 9 of the main text).
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FIG. 12: Meridians of the surfaces with Ā = 1.3 and κ̄ = 0 (cf. Fig. 11 of the main text).
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