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Electronic Supplementary Information for paper titled “Stimuli-responsive granular crystals 

assembled by dipolar and multipolar interactions”. 

 

Section S1. Electric field created by an infinite line of opposite charges. As shown in the main 

text, electric field generated by a charge placed on the midplane between two infinite parallel 

conductive plates is equal to the electric field generated by an infinite line of charges (refer to 

main-text derivation of eq. 3). We represent this infinite line of point charges by periodic charge 

density 𝜆(𝑧) with a period 2𝑑 (as can be seen from main-text Fig. 3b), which can be written as: 

 

𝜆(�̂�) =
𝑞1

𝑑
(𝛿(�̂�) − 𝛿(�̂� − 𝑑) + 𝛿(�̂� − 2𝑑)), �̂� ∈ [0, 2𝑑) 

𝜆(�̂� + 2𝑑𝑛) = 𝜆(�̂�), 𝑛 ∈  ℤ  

(1) 

, where 𝛿 is the Dirac delta function. This function can be expressed in the form of Fourier Series: 
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With this charge density function, the electric field created by an infinite series of charges can be 

represented as: 
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(3) 

Evaluation of the integral in the infinite sum on the right-hand side of (3) gives: 
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 (4) 

, where 𝐾1  is a modified Bessel function of the second kind, and 𝑚 = (2𝑘 + 1)
𝜋

𝑑
 . Thus, the 

electric field in (3) can be written as: 
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(5) 

or, as a function of the dimensionless variable 𝑟 = 𝑥/𝑑: 

 
𝐸𝑥(𝑟) =

𝑞1

πϵ0𝑑2
∑((2𝑘 + 1)π)𝐾1((2𝑘 + 1)𝜋𝑟).

∞
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(6) 

As shown by Yang and Chu (J. Inequalities Appl. 2017, 41, 2017), 𝐾1 can be approximated by: 

 
𝐾1(𝑧) ≈ √

𝜋

2

𝑒−𝑧

√𝑧
(1 + 𝑂 (

1

𝑧
)) ;  𝑧 → ∞. 

 

(7) 

Using this approximation and leaving only the first term in the sum from equation (6), we obtain 

the following expression for 𝑟 > 1: 

 
𝐸𝑥(𝑟) ≈
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𝜋
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𝑒−𝜋𝑟

√𝑟
 

 

(8) 

Section S2. Additional MD simulations of particles in a finite box.  We performed another set 

of MD simulations (hereafter 𝑆𝑏𝑜𝑥) with the aim to capture the effects of physical walls present in 

the experimental system.  The number of particles was 𝑛 = 300  of each type, boundaries 

represented a square box with side 𝐿 = 150  mm, and agitation pattern was given by the 
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Weierstrass function. Collisions of particles with the walls and between each other were treated as 

perfectly elastic (modeled by WCA potential, as in main-text MD simulations with periodic 

boundaries), and electrostatic interactions were either 𝐹1𝑝 (main-text eq. 1) or 𝐹2𝑝 (main-text eq. 

7). We assumed that particles have only static and sliding friction, both with a coefficient 𝜂 = 0.05, 

and ignored any effects caused by rolling of the beads. Nylon beads were represented by positively-

charging particles having mass of 𝑚𝑝𝑜𝑠 = 0.0198 g, whereas particles representing PTFE were 

charging negatively and had mass  𝑚𝑛𝑒𝑔 = 0.037 g. All particles had zero initial charges but 

charged by +0.0125 nC (−0.0125 nC) upon each collision, until reaching the maximum allowed 

charge of +0.75 nC (−0.75 nC) in the case of Nylon (PTFE). Charge of Nylon particles was not 

only increasing with each collision, but also decayed with first-order kinetics 
𝑑𝑄

𝑑𝑡
= −𝑘𝑄 with rate 

constant 𝑘 = 0.003 s−1. With this dynamics, average charges at the end of the simulations were 

remarkably close to the ones measured at the end of the corresponding experiments, as summarized 

in Table S2. 

Figure S1 illustrates the results of these simulations for the one and two plates. As in the 

experiments, crystals grow bigger when the particles interact via 𝐹2𝑝, rather than 𝐹1𝑝 forces (Fig. 

S1a vs. S1b), and the proportion of the particles within the domains of square packing is higher 

(~45% for 𝐹1𝑝 and ~62% for 𝐹2𝑝). In all of the 𝑆𝑏𝑜𝑥 simulations, crystals are larger than in main-

text MD simulations with periodic boundary conditions because of two possible reasons: (i) 

crystals are sometimes hit by the walls of the box, which promotes their reconfiguration and 

escaping local energy minima, and (ii) beads are more mobile when not charged and incorporated 

into crystals, which leads to them having higher effective temperature in the beginning of the 

simulations. Crystals have a tendency to migrate to one corner in 𝑆𝑏𝑜𝑥  more than in the 
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experiments; this can be attributed to the fact that there is only sliding friction in 𝑆𝑏𝑜𝑥, which leads 

to beads moving mostly in the direction of box agitation. In contrast, in the experiments friction is 

much more complex, and beads move in other directions due to additional regimes of motion such 

as rolling, rubbing against each other, etc. 

 

Figure S1. MD simulations of the formation of non-electroneutral, square-lattice crystals in 

experimental box, 𝑺𝒃𝒐𝒙. (a,b) Snapshots from simulations of crystals self-assembled from 300 
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negatively-charging and 300 positively-charging particles agitated for 5 minutes. Simulations 

using interaction forces 𝐹1𝑝 (a) and 𝐹2𝑝 (b) represent experiments with one and two conductive 

plates, respectively. Colors on the images indicate charges of the particles (quantified in the 

legend). (c) Average number of beads inside the square lattice over the time of the simulations, 

each curve represents the average of 𝑛 =  3 simulations and shaded regions indicate one standard 

deviation. 

 

Section S3. Analytical balance measurement of interaction between a charged bead and its 

image charge. Before the measurements, agitation was performed for 5 minutes in 𝐿 = 100 mm 

box with 𝑛 = 150 beads of each of two types: charging positively (Nylon, Acryl) and negatively 

(PTFE). The measurement setup is illustrated in Fig. S2 and was used as described below. 

Immediately after agitation, one of the beads from inside a crystal was picked up by antistatic 

tweezers and placed on a flat end of a wooden post (about 1 mm in diameter) covered with a very 

thin layer of cyanoacrylate glue. The post with the bead was transferred to an analytical balance 

(equipped with a post holder) and a grounded conductive plate was brought to a distance within 

50 𝜇𝑚 from the bead using a linear stage. The data from analytical balance was recorded by a 

computer (PC) connected via USB. This procedure, when performed in a timely manner, allowed 

us to start recording in about 1 minute after the end of agitation. It should be noted that the 

described manipulations inevitably cause some leakage of charge away from the beads, especially 

the ones made out of Nylon (which is expected since conductivity of Nylon is 𝜎 =10-12 S/m, orders 

of magnitude higher than that of PTFE, 𝜎 =10-24 S/m, or Acryl, 10-19 S/m), so the measured values 

do not reflect the total charge accumulated on the beads or exact discharge profile of beads in the 

experimental box. Nevertheless, the results obtained from these measurements provide us with a 
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reasonable basis to conclude that discharge of Nylon beads is a primary reason for the observed 

non-electroneutrality of the crystals.  

 

 

Figure S2. Analytical balance setup for quantifying interaction between a bead and its 

image charge. 
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Section S4. Additional force calculations.  

 

Figure S3. Additivity of interactions due to beads’ charge and voltage-induced dipoles. 

Plotted are attraction forces, obtained by FEM calculations, between a pair of Nylon and 

polypropylene (PP) beads having, respectively, +0.45  nC and −0.45  nC charges and placed 

between two conductive plates. “FEM charge” forces (“+” markers) are for charged beads without 

voltage bias between the plates; “FEM voltage” forces (square markers) are for beads without 

charge but with 8 kV bias applied between the plates; “FEM voltage and charge” forces (solid 

lines) are for the case when beads were charged and 8 kV bias was applied; “sum” curves (dashed 

lines) are obtained by summing up “FEM charge” and “FEM voltage” curves. Matching of “sum” 

with “FEM voltage and charge” curves demonstrates the additivity of interactions. 
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Figure S4. Voltage-induced interactions quantified by FEM calculations. Panels (a-c) plot 

magnitudes of interactions between non-charged beads separated by center-to-center distance r 

and placed between two conductive plates with voltage bias applied: Nylon-PP (a), Nylon-Nylon 

(b), and PP-PP (c). Magnitued of voltage bias are indicated by the colorbar in the upper right. 

Panel (d) shows that interactions with different voltages can be represented by one exponential fit 

– in particular,  normalization of forces by dielectric constants (𝜖1 and 𝜖2) of interacting beads and 

squared magnitude of voltage bias applied between the plates (𝑉2) yields matching curves for 

different beads and voltage biases. The resulting exponential fit is shown in dashed line. 
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Arrangement 

Fitting 

function 

Materials of 

interacting beads 

𝒂 𝒃 

1 plate 𝑎𝑥−𝑏 

Nylon-PTFE 9.78 × 10−14 3.74 

Nylon-Nylon 1.06 × 10−12 3.15 

PTFE-PTFE 1.72 × 10−12 3.24 

2 plates 𝑎𝑒−𝑏𝑥 

Nylon-PTFE 3.65 × 10−3 1.12 × 103 

Nylon-Nylon 1.13 × 10−3 1.03 × 103 

PTFE-PTFE 3.19 × 10−3 1.04 × 103 

Table S1. Fitting parameters obtained from FEM silmulations. 

 

 

Experiments Simulations 𝑺𝒃𝒐𝒙 

Nylon, nC PTFE, nC Positive particles, nC Negative particles, nC 

1 plate +0.44 ± 0.05 −0.67 ± 0.01 +0.44 ± 0.03 −0.67 ± 0.02 

2 plates +0.42 ± 0.06 −0.64 ± 0.02 +0.47 ± 0.03 −0.70 ± 0.02 

Table S2. Bead charges measured after crystallization experiments and used in 

simulations 𝑺𝒃𝒐𝒙. For each type, 𝑛 = 15 beads w\ere measured after the experiment, and data for 

all particles (𝑛 = 300 of each) was collected from simulations. “±” values give one standard 

deviation. 
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Section S5. Lattice classification using different definitions of bond-order parameters. 

 

Fig. S5. Comparison of detecting beads inside square vs. hexagonal lattices using different 

bond-order parameter definitions. Left plots use data from the experiment shown in main-text 

Fig. 2a with one conductive plate, plots on the right – in the main-text Fig. 2b with two conductive 

plates. Top plots show in black dotted lines 𝑄4 that correspond to curves in main-text Fig. 1c; 

similarly, bottom plots show 𝑄6  from main-text Fig. 1d. Other curves trace local bond-

orientational order parameters 𝜙4 and 𝜙6 defined as𝜙𝑠 = 〈
1

𝑁𝑏
∑ 𝑒𝑠𝑖𝜃𝑛𝑁𝑏

𝑛=1 〉 where 𝑁𝑏 is the number 

of "bonds" with neighboring particles, 𝑠  is the symmetry number (4 for square lattice, 6 for 

hexagonal), and 𝜃𝑛 is the angle to the n-th neighbor. 
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Movie captions: 

 

Supplementary Video S1. Self-assembly of non-electroneutral crystals agitated on one 

conductive plate. Overlaid is color shading that indicates structural invariant values 𝑄4 and 𝑄6 of 

beads, which depend on whether a bead is inside the square (blue, 𝑄4) or hexagonal (red, 𝑄6) 

lattice; colorbars with corresponding colors show 𝑄4 and 𝑄6 values. Histogram on the right shows 

the number of beads having certain structural invariant value. 

Supplementary Video S2. Self-assembly of non-electroneutral crystals between two 

conductive plates. Overlaid is color shading that indicates structural invariant values 𝑄4 and 𝑄6 

of beads, which depend on whether a bead is inside the square (blue, 𝑄4) or hexagonal (red, 𝑄6) 

lattice; colorbars with corresponding colors show 𝑄4 and 𝑄6 values. Histogram on the right shows 

the number of beads having certain structural invariant value. 

Supplementary Video S3. Reversible transformation of crystals into porous or filamentous 

structures upon application of, respectively, 4.5 kV and 8 kV votalge bias. 

 

 


