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1. Numerical validation of revised Einstein formula in DPD water system

The derived Einstein formula (eq. 2) was validated numerically and compared with the 
revised GK formula suggested by Jung and Schmid  [1] (eq. 1) in water DPD system, i.e. the 
conservative parameter was  and . The results are shown in Figure S 1 and the 𝑎𝑖𝑗 = 25 𝛾 = 4.5
error between the two methods is found to be at 0.8%. This error is obtained after a single run 
on a system of  DPD water particles and a box size of . The timestep of 192000 𝐿3 = 403

integration is  . 𝑑𝑡 = 0.02
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Figure S 1: Comparison of zero-shear viscosity from revised GK and Einstein methods. The 
zero-shear viscosity in the time interval  is illustrated in the inset figure. [0,5.5]

The DPD water system, i.e.  is expected to equilibrate quickly due to the single 𝑎𝑖𝑗 = 25, 𝛾 = 4.5

type particles that are not bonded with each other. Thus, the viscosity cut off point can be 
taken after a relatively short period of time. In our case we see that the viscosity equilibrates 
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around unit if  while for  it takes values close to 1.1 which is in agreement with 𝑡 < 5 𝑡~0.8

previous works  [2,3] and with the non-equilibrium Lees- Edwards method that we applied.

10 15 20 25 30 35 40 45 50
N

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
A

E

Figure S 2: Mean Absolute Error (MAE) between the average viscosities calculated using the 
GK and Einstein relations as a function of the polymer chain lengths. The average for each 
polymer length, N, is taken over every polymer concentration and  values. 𝑎𝑠𝑝,𝛾𝑠𝑝

2. Mean square end-to-end distance and characteristic ratio

The end-to-end distance in polymer melts follows the same trend for each conservative and 
dissipative parameter as the average radius of gyration (Figure 1 in main article).
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Figure S 3: Mean square end-to-end distance as a function of polymer length and interaction 
parameters. The error bars correspond to the standard deviation of the mean value over the 
time frames.
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Figure S 4: Characteristic ratio,  , where  is the mean squared bond length, 
𝐶𝑁 =

𝑅 2
𝑒𝑒

(𝑁 ‒ 1)𝑙2
𝑏 𝑙2

𝑏

calculated for polymer melts as a function of polymer length and interaction parameters.
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3. Random selection of end-to-end vector autocorrelation figures

The autocorrelation function of the end-to-end vector shown in Figure S4 has the same trend 
for each conservative and dissipative parameter studied in this work. The vector decorrelates 
faster the shorter the polymer chains are. As expected, it is observed that the slowest 
decorrelation of  is shown by the longest polymer, i.e., N = 50. 𝑒𝑒
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Figure S 5: Autocorrelation function of end-to-end vector at  and 30% 𝑎𝑠𝑝 = 15, 𝛾𝑠𝑝 = 4.5

polymer concentration, i.e. 𝑐𝑝 = 0.3
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4. Parabolic fitting on Schmidt number

The Schmidt numbers are plotted against the friction interaction parameter  and then fitted 𝛾
using the next equation:
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where  are fitting coefficients. The fitting coefficients that were obtained are given in table 𝐴,𝐵
S1.

Table S 1: Fitting coefficients from the parabolic fitting on Schmidt numbers

N A B
10 44.67 368.10
25 243.63 70.92
40 631.85 28.27
50 998.05 22.02
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Figure S 6: Parabolic fitting on the Schmidt number as a function of friction parameter. The 
Schmidt numbers shown in this figure correspond to the polymer melt case (Fig. 9  in the 𝑐𝑝 = 1

main manuscript).
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