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AFM and SEM characterization of the H3Sb3P2O14 nanosheets.

A sample for AFM and SEM was made by depositing a drop of solution of H3Sb3P2O14 at 1 g/L onto a 
clean Si wafer fragment ( 1 cm2). The drop was left in contact for 5 min and then removed. Figure SI 1 
presents a collage of adjacent images of the nanosheets recorded with a Hitachi S-4500 Scanning 
Electron Microscope (SEM) at a x1000 magnification and 25 kV acceleration voltage. Figure SI 2 displays 
an image of the same sample (different zone) obtained using a Digital Instrument Veeco Multimode 
Atomic Force Microscopy (AFM) equipped with Nanoscope® IIIa Scanning Probe Microscope controllers 
(with automated line flattening and no additional data treatment).

Figure SI 1. Typical scanning electron microscopy image of H3Sb3P2O14 nanosheets. The measurement of 340 particles provided 
their average diameter (1100 nm) and standard deviation (70%). 
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Figure SI 2. Top: Typical atomic force microscopy image of H3Sb3P2O14 nanosheets. Bottom: one example of vertical cut in the 
image showing that the nanosheet thickness is  1.1 nm. 



Figure SI 3. Left: Schematic representation of the “magic box” that allows for the observation of samples in polarized light. The 
blue double-headed arrows represent the polarization state of the light in the different parts of the device, the black double-

headed arrows represent the polarizer and analyzer directions, and the green cylinder, placed between the polarizer and 
analyzer represents a biphasic sample, with a birefringent phase at the bottom and an isotropic phase at the top, as depicted at 

the observation level. 



Figure SI 4. Curves of azimuthally-averaged scattered intensity in Kratky representation, q2.I(q) versus q, of three samples with 
same nanosheet weight fraction, CH3 = 0.16 wt%, but different PEO (100 kDa) weight fractions: 0, 1, and 2 wt%.

Figure SI 5. Experimental phase diagram of the PEO (100 kDa) /H3Sb3P2O14 colloidal suspensions. The green lines are guides to 
the eye indicating schematically the boundaries of the isotropic/birefringent nematic coexistence region.



Figure SI 6. Photographs of a series of sample tubes, with constant CH3 = 0.54 wt% and dextran weight fraction increasing from 
left to right: Cdex = 0, 0.1, 0.5, 1, 2, and 5 wt%, observed a) in natural light: the structural color changes from red to blue due to 

dextran doping, and b) between crossed polarizers: the birefringent phase is barely destabilized.

Figure SI 7.Lewis base character of PEO (100 kDa). a) Qualitative comparison of the pH ( 6) of a drop of pure water (solid 
arrow) with that ( 8) of a drop of PEO solution (25 g.L-1, dashed arrow). The PEO solution clearly has a pH more basic than pure 

water. b)  Dependence of pH on the PEO weight fraction, measured with a pH-meter.



Figure SI 8.Dependence of the lamellar period on the dextran weight fraction for six series of samples with constant H3Sb3P2O14 
weight fractions.

Figure SI 9.Lewis base character of dextran. a) Qualitative comparison of the pH ( 6) of a drop of pure water (solid arrow) with 
that ( 8) of a drop of dextran solution (25 g.L-1, dashed arrow). The dextran solution clearly has a pH more basic than pure 

water. b)  Dependence of pH on the dextran weight fraction, measured with a pH-meter.

Disjoining pressure from non-linear Poisson-Boltzmann theory:

The electrostatic potential  generated by two highly charged planar surfaces with equal charge density σ  𝜓
immersed in a monovalent 1:1 electrolyte follows from the non-linear Poisson-Boltzmann (PB) equation: (1,2)
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Where  has been implicitly normalized in units kBT/e. The PB equation is subject to the boundary conditions 𝜓
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equation fulfilling the mid-plane boundary condition yields:
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Similarly, implementing the boundary condition at the lamellar surface z = d/2 one finds:
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which may also be expressed in terms of elliptic integrals.(2) The boundary potentials ψm,s for a given distance d 
are then easily resolved numerically from the coupled expressions above. By virtue of the contact theorem, the 
osmotic (disjoining) pressure between the lamellae is then obtained from the mid-plane potential:
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A simple analytical form can be derived in the limit of very high surface charge density (λD/ℓGC >> 1) and large 
intralamellar distance (d/D >1):
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which is compared against the numerical results in Figure SI 7 below.

Figure SI 10: Disjoining pressure dis between two uniformly charged lamellae at distance d from non-linear PB theory compared 
to the analytical approximation Eq. (24) for the intermediate regime.
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