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1 Two-body potential

Here we reproduce the definition of the two body potential V xy
B (r) between a linker x and a linker y shown in1,2:
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Here, ∆li = h0− li, q0 describes the inverse of the correlation length, and λm is the effective spring stiffness of the membrane, related to
the inverse of the fluctuation amplitude of the unbound membrane3.

When assuming a tensionless membrane of stiffness κ, residing in a minimum of a potential with a curvature γ, q0 = 1/ 4
√

κ/γ and,
λm = 8

√
κγ. Analogous equations can exist for membranes with tension3.

In the simulations, the particles are prevented from residing at the same lattice site, which in the potential has the effect of a
hard-core repulsion below a distance given by the lattice spacing a. Therefore we modify the potential as follows
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2 (r) =

{
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B (r) r > a.
(2)

2 Expected coordination number

In the random system containing N1 links of type 1 and A− 1− (N1− 1) = A−N1 lattice sites that are empty or of type 2, the average
probability to find a type 1 bond on any one lattice site is

N1−1
A−1

, (3)

and therefore the average number of neighbours is given by
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Another way to see this is by considering the average number of neighbours by the probability of finding n neighbours (p(n)) on the
available 1 to 4 neighbouring lattice sites ∑

4
i=1 n · p(n), which can be calculated by the probability of drawing either a type 1 bond or not

from the total number of bonds,
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3 Monte Carlo Simulations

Benefitting from a recently developed coarse-grained Monte Carlo simulation framework2,4, we conduct Monte Carlo simulations on
the growth of adhesion domains with multiple binding pairs to mimic the current experiments as closely as possible. Specifically, the
GUV and SLB membranes are discretized into square lattices with lattice constant a. Periodic boundary conditions are considered here.
A growing contact zone with an increasing radius is located in the middle of the simulation box, while the DNA linkers on the free
region between GUV and SLB membranes maintain constant density, providing the reservoir reconstructing the appropriate statistical
ensemble. The simulation system evolves in time by alternate execution of diffusion, stochastic binding/unbinding as well as growth
steps. The mobility of freely diffusive DNA linkers is treated as a random walk with time step ∆t. Here, DDNA represents the diffusion
coefficient of DNA constructs which is taken to be the same for all DNA lengths because they all have the same membrane attachments.
The forming and breaking of intermittent bridges between the two membranes follow a coarse-grained kinetics5. DNA linkers can
switch from an intra- to an inter-membrane configuration only if the opposing lattice site is empty, while breaking the bridge places the
intra-membrane DNA construct on the SLB or the vesicle with equal probability. The effective association/dissociation rates coupling to
the thermodynamic properties of membranes can be analytically obtained. In addition, the contact zone radius will increase at a slow
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constant rate, 0.001 per time step, from initially zero to the final state with R = 30, so that the concentration of bridges is always in
equilibrium with the instantaneous area of contact between the two membranes. The further details of our Monte Carlo simulations are
described in Ref.2,4. Using the representative system parameters summarized in Table 1 of the manuscript, we can perform a series of
simulations and understand the DNA linker mediated membrane adhesion.

4 Membrane parameters

The full list of parameters used in the simulation is shown in Table 1. The simulation box is made from N cells with lattice constant a.
The contact zone grows at a constant rate ∆R/∆t that ∆R is the incremental radius of contact zone at each time step, ∆t. The diffusion
coefficients of both short and long free DNA constructs are represented by DDNA. The immobilization of DNA bridges is considered. C0

S
and C0

L stand for the initial concentrations of short and long DNA constructs, respectively. CBS and CBL are the initial concentrations
of short and long DNA bridges. The interaction between single chol and its binding site in the bilayer is associated with the insertion
energy Ei, interaction range αS, αL and intrinsic reaction rate k0S, k0L. Due to common design of the sticky ends, Ei is identical for the
short and long linker. The remaining parameters are explained in the table caption in the main text.

Table 1 Full list of membrane parameters used in the simulation.

Quantity Symbol Value
Lattice constant a 10nm
Number of cells N 80×80
Growth rate of the contact zone ∆R/∆t 0.05nm
Diffusion coefficient of LS and LL DDNA 0.16µm2/s
Diffusion coefficient of bridges 0
Initial concentration of DNA C0

S+C0
L 50%

Initial concentration of bridges CBS, CBL 0
Time step ∆t = a2/4DDNA 156.2µs
Membrane bending rigidity κ 30kBT
Potential curvature γ 2.17×105 kBT/µm4 6,7

Potential height h0 50nm6,7

Temperature T 300K
Fluctuations amplitude σ0 7nm6,7

DNA linker elastic modulus λS, λL 3×104 kBT/µm2 8

DNA linker length lS 8nm8

lL 15nm8

Insertion energy Ei 6 kBT 9

Interaction range αS=αL 1nm4

Intrinsic reaction rate k0S=k0L 1000/s10
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