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Simulation protocols.

Here we give more details about the simulation proto-
cols and how the data analysis is done for both models.
In SS models, like the one proposed by Durian [1], a
speed profile is generally imposed with a given shear rate
γ̇ value, and as a consequence, the value of σ is mea-
sured as the temporal average over a sufficiently long
simulation time. In SRF model, we distinguish two dif-
ferent kind of algorithm [2], the first at constant self-force
(SRF-CSF), where the value of f remains fixed through-
out the simulation, and the second at constant parallel
velocity (SRF-CPV), where the value vR‖ = 1

N

∑
~vi · ~nRi

is set, and in each step the value of f is adjusted to keep
vR‖ constant. The SRF-CPV method has the advantage
of allowing exploration closer to the critical point. This
is because, similarly to what happpens in systems under
shear, it is possible for the system to find equilibrium for
f > fc due to finite size effects [3, 4]. In this line, the
SRF-CPV method ensures a flow that does not suddenly
stagnate in the vicinity of fc. In Fig. 1 we show that the
choice of simulation method does not change the results
in areas where sudden stagnation is not observed.

FIG. 1. γ̇R vs. f using SRF-CPV and SRF-CSF (section with-
out effects of finite size) for N = 16384, φ = 0.925 and harmonic
potential. It is observed that both curves show the same behavior.

One last point to discuss is how the value of σc and
fc are calculated. For SS and SRF-CPV, the values are
calculated by fitting the HB curve and looking for the

values of σc and fc that maximize χ2, respectively. In
the case of SRF-CSF, a sweep is made in f values, with
a jump of ∆f = 0.00005, and fc is set for the highest
value at which stagnation is appreciated. We also verify
that calculation of fc is independent of the simulation
method.
To simulate the system dynamics, the time is measured
in units of t0 = r20/Dε, and we integrate the overdamped
particle equation using the RK-2 method at each time
step. Unless otherwise specified, we use two system sizes
N = 16384 and N = 65536 with ∆t = 0.85t0, where
we have verified that the selection of ∆t does not affect
results. For all our results using the SS model, average
is taken over 20 different configurations, and for all our
results using the SRF model, average is taken over 96
different configurations.

Irving-Kirkwood

To quantify pressure and shear stress we use the Irving-
Kirkwood calculation [5] for the stress tensor σαβ . We do
this to avoid neglecting the effects of free particles that
may be present in gaseous areas.

σαβ =
1

V

∑
i<j

~rij,α ~fij,β +
∑
i

δ~vi,αδ~vi,β

 . (1)

In this equation, the indices α and β are the carte-
sian coordinates, ~fij and ~rij are vector force and vector
distance between the particles, δ~vi are the fluctuations
around the mean parallel velocities, which we define as
δ~vi = ~vi − γ̇(~ri · ŷ)x̂ for SS and δ~vi = ~vi − v‖n̂Ri for SRF.
With these expressions, we seek to cancel out the contri-
butions of the deformations to the velocity ~vi. In order
to do this in the SS model, we need only to subtract
the speed profile term. On the other hand, for the SRF
model, we know that the effect of the self-force will lead
to each particle moving with an mean velocity v‖; for this
reason, we consider that the vectorial term that provides
the deformation can be written as v‖n̂

R
i . Shear stress σ is

defined as σ ≡ σxy, and the pressure as p ≡ (σxx+σyy)/2.
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fc at infinity system size.

Here, we do a finite-size analysis, which is essential
to validate the existence of an active yielding transition
in the thermodynamic limit fc(φ,N → ∞). Using the
SRF-CSF, we calculate how the value of fc depends on
N . These results are shown in image Fig.2a, where it can
be seen that the value of fc saturates at a value f∞c in
the limit N →∞.

FIG. 2. For φ = 0.925 and harmonic potencial: a) fc vs. N , the
data appears to converge to f∞c /p0r0 = 0.071. b) fc − f∞c vs. N ,
the data shows a power law (fc(N)− f∞c ) ∼ N−2.2.

For our simulation with φ = 0.925, f∞c /p0r0 = 0.071
is obtained, and a power law (fc(N) − f∞c ) ∼ N−2.2

is appreciated (see Fig. 2b). The existence of a non-
zero value of f∞c suggests that the presence of an active
yielding transition is not a finite size problem.

Phase separation detection.

A second detection method, which requires less compu-
tational effort, is based on the idea that when nucleation
is present, the effective area Aeff occupied by the parti-
cles in liquid areas decreases, which causes an increase in
the global pressure p. For the calculation of the effective
area Aeff , a tessellation algorithm on free space is used
(see Fig. 3), adjusted to have a maximum error of 1.5%.
The Fig. 4a shows how p evolve over the simulation time.

FIG. 3. Tessellation algorithm scheme for N = 16384, φ = 0.925:
a) system that exhibits a nucleation zone; b) system where all
particles with less than three contacts were removed, effectively
removing the gaseous zone from the system; c) the area where the
removed particles were (in green) is computed using the tessellation
algorithm, and this is used to calculate the effective area Aeff .

In Fig. 4b,c we see how, for values of f > f?, there
are sudden increases in pressure p which overlap with a
decrease in Aeff . In our data, we consider that a sys-
tem does not show phase separation when, for a given
value of f , it satisfies the condition p/p0 < 1.05 for all
configurations at all simulation times.

FIG. 4. For N = 16384, φ = 0.925 and harmonic potential:
a) Pressure p vs. simulation time t. For (f − fc)/p0r0 = 0.02,
no increase in pressure is observed (homogeneous liquid). For
(f−fc)/p0r0 = 0.07 an increase in pressure is observed in some in-
stances (there are some configurations where nucleation occurs).
For (f − fc)/p0r0 = 0.18, an increase in pressure is observed
for all simulation times (all configurations show nucleation). b)
Mean pressure p̄ vs. (f − fc)/p0r0. c) Effective area Aeff vs.
(f − fc)/p0r0.
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Shear oscillation.

The existance of a correlation time related to the struc-
ture’s lifetime can also be verified using oscillation simu-
lations for the SS model. Here we invert the orientation
of the velocity profile γ̇ → −γ̇, which causes a change in
the measured stress value σ → −σ (see Fig. 5). Due to
the presence of these structures, the jump between σ and
−σ is not instantaneous, so we define the lifetime of the
structures t∗ as the time necessary for this change in the
stress value to occur.

FIG. 5. Shear oscillation scheme. The orientation of the velocity
profile changes abruptly (γ̇ → −γ̇).

The Fig. 6a shows how this process is carried out.
Firstly, the system is subjected to a shear rate γ̇, and
as a result, the stress varies around an average value σ̄.
Then, in time ti, the orientation changes abruptly to −γ̇,
and we wait until the value −σ̄ is reached in time tf . In
Fig. 6b we show how t∗ = tf − ti depends on γ̇ ,which

verifies that the lifetime of the structures in the SS sim-
ulations follows a power law t∗ ∼ γ̇−0.93.

FIG. 6. For shear oscillation method: a) Shear stress σ vs. simula-
tion time t for N = 65536 and γ̇ = 3.2×10−5; shear stress changes
its orientation from σ̄ to −σ̄ between times ti and tf . b) t∗ vs.
γ̇−1 for N = 65536 and both potentials, a power law t∗ ∼ γ̇−0.93

is obtained.
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