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XRD pattern of PADH/MUSm-Ngels

XRD pattern of pristine MUS, clay-free terpolymer cryogel (PADH/MUSO-Cgel) and clay-free
terpolymer hydrogel (PADH/MUSO-Hgel) as well as nanocomposite PADH/MUS10-NCgel and
NHgel samples prepared at Cyys = 1.50% (w/v) were presented in Figure S1.
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Figure S1. XRD pattern of pristine MUS, clay-free terpolymer cryogel (PADH/MUSO-Cgel) and clay-free terpolymer hydrogel

(PADH/MUSO-Hgel) as well as nanocomposite PADH/MUS10-NCgel and NHgel samples prepared at Cyys = 1.50% (w/v),
respectively.



Thermal gravimetric analysis of PADH/MUSm-Ngels

Figure S2 shows MT / My% and DTG curve of pristine MUS, clay-free cryogel and hydrogel
(PADH/MUSO-Cgel and -Hgel), terpolymer nanocomposite cryogel and hydrogel (PADH/MUS8
and PADH/MUS10-NCgel and -NHgel) samples prepared at MUS content 1.10% (w/v) and 1.50%
(w/v), respectively.
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Figure S2. M; / M¢% (A) and DTG curve (B) of MUS-free cryogel and hydrogel (PADH/MUSO-Cgel and -Hgel), terpolymer
nanocomposite cryogel and hydrogel (PADH/MUS8 and PADH/MUS10-NCgel and -NHgel) samples prepared at MUS content
1.10% (w/v) and 1.50% (w/v), respectively. (C) My / My% and DTG curve of pristine MUS.



Dual-responsive self-assembly behavior of PADH/MUS-Ngels
pH-responsive swelling behavior of PADH/MUSmM-NHgels

Figure S3 shows the equilibrium volume swelling ratio ¢ of terpolymer PADH/MUSm-NHgels

shown as a function of the swelling pH as well as MUS loading levels. Photographs of
PADH/MUS8-NHgels containing 1.10% (w/v) MUS after swelling in pH buffer solution of 2.1 and
9.8 are already given.

PADH/MUS1-NHgel

wwﬁ%

PADH/MUSS I ]i‘lJ‘|HIJ|H|J}H||%

e W s
mpm

I’

=

Figure S3. (A) Photographs of PADH/MUS8-NHgels containing 1.10% (w/v) MUS after swelling in pH buffer solution of 2.1 and

9.8 and pH-response of DEAEM units in acidic and alkaline conditions. Equilibrium volume swelling ratio ¢V of terpolymer

PADH/MUSmM-NHgels shown as a function of the swelling pH as well as MUS loading levels.

Temperature-responsive swelling behavior of PADH/MUSm-NHgels

Temperature-dependent equilibrium volume swelling ratio ¢, of terpolymer PADH/MUSm-

NHgels are shown as a function of the swelling temperature as well as MUS loading levels in
Figure S2.
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Figure S4. Temperature-dependent equilibrium volume swelling ratio (ﬂV of terpolymer PADH/MUSm-NCgels (A) and

PADH/MUSmM-NHgels (B) shown as a function of the swelling temperature as well as MUS loading levels.

Salting-in/out characteristics of PADH/MUS-NHgels
The equilibrium volume swelling ratio ¢, of PADH/MUSm-NHgels as a function of the MUS

loadings as well as the ionic strength of aqueous salt solutions of KI (A), KBr (B), and KCI (C) are
collected in Figure S3.
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Figure S5. The equilibrium volume swelling ratio (DV of PADH/MUSm-NHgels as a function of the MUS loadings as well as the
ionic strength of aqueous salt solutions of KI (A), KBr (B), and KCI (C).



