ELECTRONIC SUPPLEMENTARY INFORMATION

Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay $Laponite^{\mathbb{R}}$

Chandeshwar Misra, Venketesh T Ranganathan, and Ranjini Bandyopadhyay* Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, INDIA

(Dated: September 13, 2021)

1. EFFECTS OF ADDITIVES

1(a) Photon correlation spectroscopy study

Figure S1: The diffusive nature of the fast β - relaxation time, τ_1 , and mean slow α - relaxation time, $\langle \tau_{ww} \rangle$ (left and right panels respectively), are shown for (a) a 12.2 mM Laponite dispersion and Laponite dispersions in the presence of (b) DMF (260 mM), (c) glucose (220 mM) at different waiting times t_w . The solid lines are linear fits passing through the origin.

The straight line fit passing through the origin demonstrates the diffusive nature of both relaxation processes [1]. The reciprocal of the slope of each plot provides diffusion coefficients for both relaxation processes i.e. $D_1 = 1/\tau_1 q^2$ and $D_{ww} = 1/\langle \tau_{ww} \rangle q^2$, where D_1 and D_{ww} are the diffusion coefficients corresponding to β - (diffusion inside the cage) and α -(cooperative diffusion) relaxation processes respectively.

Figure S2: Diffusion coefficients corresponding to β - (D_1) and slow α - (D_{ww}) relaxation processes for 12.2 mM aqueous Laponite dispersions and Laponite dispersions in the presence of 220 mM glucose and 260 mM DMF at $t_w = 100$ min. The inset shows D_1 and D_{ww} vs. waiting time t_w for 12.2 mM aqueous Laponite dispersions and Laponite dispersions in the presence of glucose and DMF.

Figure S3: Conductivity of 12.2 mM aqueous Laponite dispersions in the presence of different additives as a function of waiting time t_w .

The Debye screening lenghts can be estimated using the relation: $\kappa^{-1} = (\epsilon_0 \epsilon_r k_B T / \Sigma_i (z_i e)^2 n_i)^{1/2}$ [2], where ϵ_0 , ϵ_r , k_B , z_i , n_i and e are the permittivity of free space, relative permittivity, Boltzmann constant, valency of *i*th ion, total number density of the *i*th ion and electron charge respectively. The Na⁺ ions in the Laponite dispersions are contributed by the externally added NaCl and the dissociation of Na⁺ from the Laponite surface. The concentration of Cl⁻ (which is contributed only by the added salt) can be computed from the concentration of the added salt. Concentration of Na⁺ can be calculated using the relation: $\sigma = e(\mu_{Na}n_{Na} + \mu_{Cl}n_{Cl})$ [3], where σ is the conductivity of the system and mobilities of Na⁺ and Cl⁻ are given by $\mu_{Na} = 5.19 \times 10^{-8} m^2/sV$ and $\mu_{Cl} = 5.19 \times 10^{-8} m^2/sV$ [4] respectively. In the presence of KCl, the concentration of Na⁺ can be estimated using: $\sigma = e(\mu_{Na}n_{Na} + \mu_{Cl}n_{Cl})$, where mobility of K⁺ is $\mu_K = 7.62 \times 10^{-8} m^2/sV$ [4].

1(c) Rheometry

Figure S4: Viscoelastic moduli, G' and G'' (represented by solid and open symbols in blue respectively), and elastic stress, σ_{el} (red), of 12.2 mM aqueous Laponite dispersions in the presence of 2 mM NaCl at $t_w = 200$ min. The horizontal and vertical dashed lines represent yield stress, σ_y , and yield strain, γ_y , respectively.

The elastic stress, $\sigma_{el} = G' \times \gamma$, which separates the contribution of the elastic stress from the total stress, is plotted as a function of γ (Figure S4). The value of σ_{el} at which the straight line fit to $\sigma_{el} vs. \gamma$ deviates by more than 3% from the prediction of Hooke's law is defined as the yield stress, σ_y , while the corresponding γ is the yield strain, γ_y .

Figure S5: (a) and (b) Normalized storage $(G'/G'_{0.5})$ and loss $(G''/G''_{0.5})$ moduli vs. applied strain amplitude γ for aqueous Laponite dispersions with and without additives at $t_w = 200$ min. Here, $G'_{0.5}$ and $G''_{0.5}$ are the values of the storage and loss moduli at strain 0.5%. The strain amplitude sweep data has been normalized following the procedure proposed in [5].

1(d) Cryo-SEM Images

Figure S6: Magnified cryo-SEM micrographs for (a) a 12.2 mM aqueous Laponite dispersion and Laponite dispersions with (b) 90 mM glucose, (c) 90 mM DMF, (d) 1 mM NaCl and (e) 1 mM KCl at $t_w = 24$ h. OC refers to overlapping coin configurations of Laponite platelets.

Figure S7: Network branch thickness for 12.2 mM Laponite dispersions with and without additives at $t_w = 24$ h.

Figure S8: Storage modulus G' (solid symbols) and loss modulus G'' (open symbols) as a function of applied strain amplitude γ for 12.2 mM aqueous Laponite dispersion in the presence of different additives at $t_w = 24$ h.

Figure S9: Cryo-SEM micrographs for (a) a 12.2 mM aqueous Laponite dispersions without additives and with (b) 90 mM glucose, (c) 90 mM DMF, (d) 1 mM NaCl and (e) 1 mM KCl at $t_w =$ 200 min. (f) Average pore area for 12.2 mM aqueous Laponite dispersions in the presence of 90 mM glucose, 1mM NaCl and 1 mM KCl at waiting times 24 h (black) and 200 min (olive).

2. EFFECTS OF TEMPERATURE

Figure S10: Conductivity for prefixed and postfixed temperature experiments for 12.2 mM aqueous Laponite dispersions as a function of t_w .

Figure S11: (a) and (b) Normalized storage $(G'/G'_{0.5})$ and loss $(G''/G''_{0.5})$ moduli vs. applied strain amplitude γ for dispersions with prefixed and postfixed temperatures at $t_w = 200$ min. $G'_{0.5}$ and $G''_{0.5}$ are the values of the storage and loss moduli at strain 0.5%.

REFERENCES

- * Electronic address: ranjini@rri.res.in
- Berne, B. J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics; John Wiley & Sons: New York, 1975.
- [2] Israelachvili, J. N. Intermolecular and Surface Forces; 3rd ed. Academic Press: London, 2010.
- [3] Benenson, W.; Harris, J. W.; Stocker, H.; Lutz, H. Handbook of Physics; Springer-Verlag: New York, 2002.
- [4] Haynes, W. M. CRC Handbook of Chemistry and Physics 95th ed.; CRC Press: Boca Raton, FL, 2014.
- [5] Gabriel, Y. H. Choong.; Davide S. A. De Focatiis.; David G. Hassell. Viscoelastic melt rheology and time-temperature superposition of polycarbonate-multi-walled carbon nanotube nanocomposites. *Rheol. Acta* 2013 52, 801-814.