Supplementary information

Simple pillar[5]arene assembled multi-functional material with ultrasensitive sensing, self-healing, conductivity and host-guest stimuli-responsiveness properties

Juan Liu,*^a Hai-Long Yang,^b Xiao-wen Sun,^b You-Ming Zhang,^b Hong Yao,^b Tai-Bao Wei ^b and Qi Lin*^b

^aCollege of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Xibei Xincun, Lanzhou, 730000, China.

^bKey Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.

**Corresponding author.*

E-mail addresses: E-mail: liujuan656@126.com, linqi2004@126.com.

Table o	f Contents
---------	------------

Table S1 The ICP date of xerogel TP-QG with Fe ³⁺
Fig. S16 Powder XRD patterns of xerogel TP-QG, TP-QG-Fe and TP-QG-Fe + F ⁻ .
(blue) in KBr disks13
Fig. S15 IR spectra of the TP-QG (black), TP-QG-Fe (red) and TP-QG-Fe + F-
Fig. S14 The photograph of the linear range
Fig. S13 The photograph of the linear range
Fig. S12 ESI-MS spectrum of the TP-QG
Fig. S11 SEM images of the (a) TP and (b) Q11
Fig. S10 IR spectra of the TP (black), Q (red) and TP-QG (blue) in KBr disks10
TP + Q; (g) Free Q]. 10
Fig. 9 The partial ¹ H NMR spectra of the TP in DMSO- d_6 with Q [(a) Free TP; (b)
Fig. S8 ESI-MS spectrum of the Q9
Fig. S7 FT-IR spectrum of the Q9
Fig. S6 ¹³ C NMR spectrum of the Q
Fig. S5 ¹ H NMR spectrum of the Q in DMSO- d_6
2.2 Synthesis of compound Q
Fig. S4 ESI-MS spectrum of the TP7
Fig. S3FT-IR spectrum of the TP.6
Fig. S2 ¹³ CNMR spectrum of the TP in CDCl ₃
Fig. S1 ¹ H NMR spectrum of the TP in CDCl ₃
2.1 Synthesis of compound TP 4
2. Synthesis of compound TP and Q 4
1.2 Instruments
1.1 Materials4
1. Experiment

Fig. S17 The photograph of the IC linear range14
Fig. S18 Ion chromatogram of fluoride using an eluent containing Na ₂ CO ₃ (4.5 mM)
+ NaHCO ₃ (1.4 mM), a flow rate of 1.20 mL min ⁻¹ , injection volume of 25 µL and
suppress current of 31 mA. The peaks highlighted are due to 1-F ⁻ . Detailed Data
shown in Table S2 14
Table S2 The detailed data of Fig. S18 14
Fig. S19 The changes of fluorescent intensity "ON-OFF-ON" cycles of the TP-QG,
controlled by the alternative addition of Fe^{3+} and F^{-} 15
Notes and references

1. Experiment

1.1 Materials

All reagents and starting materials were obtained from commercial suppliers and used as received unless otherwise noted. All cations were used as the perchlorate salts, which were purchased from Alfa Aesar and used as received. Fresh double distilled water was used throughout the experiment.

1.2 Instruments

Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury 400 and Varian Inova 600 instruments. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The X-ray diffraction analysis (XRD) was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation (λ =1.54073Å). The morphologies of the **TP**, **Q** and **TP-QG** were characterized using field emission scanning electron microscopy (FE-SEM, JSM-6701F) at an accelerating voltage of 8 kV. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer.

2. Synthesis of compound TP and Q.

2.1 Synthesis of compound **TP**.

Schemes S1 Synthesis route of the TP

According to previous report, the **TP** was synthesized.^{S1} In a 250 mL round-bottom flask, 1,4-dimethoxybenzene(1.38g, 10mmol), paraformaldehyde (0.64 g, 20 mmol) and 1,2-dichloroethane (200 mL) were added and the mixture was stirred at 30°C for 30 min. Then boron trifluoride diethyl etherate (2.5mL, 16.5 mmol) was added to the

solution and the mixture was stirred at room temperature for 1 h and concentrated by rotary evaporation. The resultant oil was dissolved in CH₂Cl₂ and washed 3~4 times with H₂O. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was isolated by flash column chromatography using petroleum ether/ dichloromethane (2 : 1,v/v) to give **TP** (0.78 g, 52%, yield) as a white solid. M.P.: 180-182°C. ¹HNMR (400 MHz, CDCl₃) δ /ppm: 6.90(s, 10H), 3.85(s, 10H), 3.77(s, 30H). ¹³C NMR (150 MHz, CDCl₃) δ /ppm: 150.63, 128.26, 113.85-113.63, 55.76-55.58, 29.52; FT-IR (anhydrous KBr, cm⁻¹) v: 2944 (Ar-H), 1208 (OCH₃); ESI-MS m/z: Calcd for C₄₅H₅₀O₁₀, [**TP** + Na]⁺: 773.3296; Found 773.3116.

Fig. S1 ¹H NMR spectrum of the TP in CDCl₃.

Fig. S2 ¹³CNMR spectrum of the TP in CDCl₃.

Fig. S3 FT-IR spectrum of the TP.

Fig. S4 ESI-MS spectrum of the TP.

2.2 Synthesis of compound **Q**.

Schemes S2 Synthesis route of the Q

According to our previous report, the **Q** was synthesized.^{S2} A 20 mL THF containing 10 mmol (2.64 g) of 1,3,5-benzene-tricarbonyl trichloride was added drop by drop to a 40 mL THF solution containing 30.5 mmol (2.86 g) of 4-aminopyridine and 35mmol (4.8 mL) of distilled triethylamine at 0°C with continuous stirring. After stirred for 12 h, the reaction temperature was allowed to rise to room temperature. The resulted product was recrystallized from a mixed solvent of DMF (100 mL) and H₂O

(200 mL) and dried at 80°C under vacuum (3.50 g, 80%, yield); M.P.: 167-170°C. ¹H NMR (400 MHz, DMSO- d_6) δ /ppm: 10.98 (s, 3H), 8.77 (s, 3H), 8.55-8.52 (t, J = 5.0Hz, 6H), 7.85-7.82 (t, J = 4.4Hz, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ /ppm: 165.68, 156.37, 149.58, 135.07, 131.36, 114.75; FT-IR (anhydrous KBr, cm⁻¹) v: 3432 (N-H), 3080 (Ar-H), 1682 (C=O); ESI-MS m/z: Calcd for C₂₄H₁₈N₆O₃, [**Q**+H]⁺:439.1513; Found 439.1507.

Fig. S6 13 C NMR spectrum of the Q.

Fig. S8 ESI-MS spectrum of the Q.

Fig. 9 The partial ¹H NMR spectra of the TP in DMSO- d_6 with Q [(a) Free TP; (b) TP + Q; (g) Free Q].

Fig. S10 IR spectra of the TP (black), Q (red) and TP-QG (blue) in KBr disks.

Fig. S11 SEM images of the (a) TP and (b) Q.

Linear Equation: Y= -29293.1949X + 692.97563

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n - 1}} = 2.2636 \qquad \text{K} = 3$$

$$LOD = K \not \boxtimes \delta/s = 2.32 \not \boxtimes 10^{-10} \text{ M}$$

Fig. S13 The photograph of the linear range.

Linear Equation: Y= -350.134X + 225.79459

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} = 5.0144$$
 K =

 $LOD = K \not {a} \delta/s = 4.30 \not {a} 10^{-8} M$

Fig. S14 The photograph of the linear range.

Fig. S15 IR spectra of the TP-QG (black) , TP-QG-Fe (red) and TP-QG-Fe + F (blue) in KBr disks.

Fig. S16 Powder XRD patterns of xerogel TP-QG, TP-QG-Fe and TP-QG-Fe + F⁻.

Table S1	The ICP	date of xerogel	TP-QG	with Fe ³⁺ .
----------	---------	-----------------	-------	-------------------------

lon	Initial concentration (mg/L)	Residual concentration (mg/L)	Absorbing rate %	
Fe ³⁺	$4.62 imes10^{-5}$	$1.32 imes10^{-7}$	98.68%	

Fig. S17 The photograph of the IC linear range.

Fig. S18 Ion chromatogram of fluoride using an eluent containing Na₂CO₃ (4.5 mM) + NaHCO₃ (1.4 mM), a flow rate of 1.20 mL min⁻¹, injection volume of 25 μ L and suppress current of 31 mA. The peaks highlighted are due to 1-F⁻. Detailed Data shown in Table S2.

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount mg/L	Туре
1	3.20	F	0.056	0.013	46.56	0.632	BM *^
2	3.56	n.a.	0.077	0.015	53.44	n.a.	MB*
Total:			0.133	0.028	100.00	0.632	

Table S2 The detailed data of Fig.S18

Fig. S19 The changes of fluorescent intensity "ON-OFF-ON" cycles of the TP-QG, controlled by the alternative addition of Fe^{3+} and F^{-} .

Notes and references

- [S1] T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023.
- [S2] Y. Q. Fan, J. Liu, Y. Y. Chen, X. W. Guan, J. Wang, H. Yao, Y. M. Zhang, T. B. Wei and Q. Lin, *J. Mater. Chem. C*, 2018, 6, 13331-13335.