1

Electronic Supporting Information

Stimuli-responsive microgels with cationic moieties: Characterization and interaction with *E.coli* cells

Larissa Hussmann^{a,b}, Thomke Belthle^{a,b}, Dan E. Demco^{*a,c}, Radu Fechete^c, Andrij Pich^{*a,b,d}

^aDWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany ^bFunctional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany ^cTechnical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca, Romania ^dAachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands

Zetapotential (ζ) of charged poly(VCL-VIM⁺) microgels calculated from electrophoretic light

scattering (ELS)

Table S1 Zetapotential (ζ) and electrophoretic mobility (μ_E) of poly(VCL-VIM⁺) microgels with 3-10 mol% VIM⁺ content measured by electrophoretic light scattering at T = 20 °C and 60 °C in H₂O.

VIM ⁺ concentration	$\mu_{\rm E}$ at 20 °C	$\mu_{\rm E}$ at 60 °C	ζ potential at 20 °C	ζ potential at 60 °C
[mol%]	[µmcm/Vs]	[µmcm/Vs]	[mV]	[mV]
3	1.24 ± 0.15	5.25 ± 0.15	17.5 ± 2.1	41.7 ± 1.2
5	1.75 ± 0.02	5.62 ± 0.12	24.6 ± 0.2	44.6 ± 0.9
10	2.71 ± 0.17	5.74 ± 0.15	38.2 ± 2.4	45.6 ± 1.2

Raman spectra of PVCL and poly(VCL-VIM⁺) microgels with 3, 5, and 10 mol% VIM⁺

Fig. S1 Raman spectra of PVCL (reference) and poly(VCL-VIM⁺) microgels with 3, 5, and 10 mol% VIM⁺. For all the samples the crosslinking density is 2 mol% BIS. The region characteristic for stretching vibration (C-H) at $\nu = 3160$ cm⁻¹ is enlarged and shown in insert.

Self-diffusion coefficients as a function of temperature of charged microgels determined by dynamic light scattering (DLS)

Fig. S2 Self-diffusion coefficients (*D*) of PVCL and poly(VCL-VIM⁺) microgels measured at T = 20 °C by DLS as a function of VIM⁺ comonomer concentration.

Laplace transformation of electrical field autocorrelation functions for microgels

Fig. S3 Laplace transformation of electrical field autocorrelation functions for 3, 5, and 10 mol% VIM⁺ comonomer. Average plots from three measurements are shown for the swollen state (T = 20 °C), as well as the collapsed state (T = 50 °C) of the respective microgel.

Volume phase transition by ¹H NMR spectroscopy and relaxometry described by sigmoidal

Boltzmann function.

Fig. S4 Volume phase transition for PVCL (a), poly(VCL-VIM⁺) with 3 mol% VIM⁺ (b), 5 mol% VIM⁺ (c) and 10 mol% VIM⁺ (d). The sigmoidal Boltzmann function was used for fits of the curves for CH₃ (VIM⁺, green line) and CH₂ (VCL, blue line). The fit parameters T_t and ΔT_t are given in Table S2.

Table S2 Volume phase transition temperature T_t , and ΔT_t for PVCL and poly(VCL-VIM⁺) microgels with different concentration in methylated vinylimidazole (VIM⁺). Thermodynamic parameters T_t , and ΔT_t were obtained from sigmoidal Boltzmann fit functions for CH₃ and CH₂ ¹H NMR resonances shown in temperature dependent volume phase transition of Fig. S2.

microgel	$T_{t} [^{\circ}C]^{a}$	$\Delta T_{\mathrm{t}} [^{\mathrm{o}}\mathrm{C}]^{\mathrm{a}}$
p(VCL)	40.4	2.6
poly(VCL-VIM ⁺)-3 mol%		
CH ₃	41.9	1.3
CH_2	37.4	2.6
poly(VCL-VIM ⁺)-5 mol%		
CH ₃	45.6	4.8
CH ₂	41.9	3.3
poly(VCL-VIM ⁺)-10 mol%		
CH ₃	44.6	6.7
CH ₂	43.3	3.9

^aErrors are of the order of 5 %.

Interaction of poly(VCL-VIM) microgels with E.coli cells

Fig. S5 CLSM images of poly(VCL-VIM) microgels containing 10 mol% unmodified vinylimidazole exposed to cells after LIVE/DEAD staining of *E.coli cells* by using ab189818 bacterial viability assay kit from abcam®. In the merged darkfield image (left) alive cells are shown in green, dead cells are presented in red and the corresponding brightfield images are shown on the right-hand side.

Fig. S6 Percentage of dead cells (black) and cell viability (red) of free cells (ref.) and cells exposed to PVCL microgels, poly(PVCL-VIM) microgels containing 10 mol% unmodified comonomer vinylimidazole as well as poly(VCL-VIM⁺) microgels with increasing comonomer content (3-5mol%).