Supporting Information for

Stretchable Multifunctional Hydrogel for Sensing Electronics with Effective

EMI Shielding Property

Mingming Hao, ^{a,b} Yongfeng Wang, ^b Lianhui Li, ^b Qifeng Lu, ^b Fuqin Sun,^b Lili Li, ^b Xianqing Yang, ^b Yue Li, ^b Mengyuan Liu, ^b Sijia Feng, ^b Simin Feng,^b and Ting Zhang^{*a,b,c}

^a. School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road,

Hefei, Anhui, 230026, P. R. China

^b.i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and

Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R.

China.

^cCenter for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai,

200031, P. R. China.

Corresponding Author

*E-mail: tzhang2009@sinano.ac.cn

Fig. S1. XRD patterns of (a) Fe_3O_4 , (b) PVA, (c) PEDOT: PSS/PVA, and (d) the 5% Fe_3O_4 /PEDOT: PSS/PVA hydrogel, respectively.

Fig. S2. (a) The dynamic mechanical analysis of the storage moduli (E') and loss moduli (E'') for the 5% Fe₃O₄/PEDOT: PSS/PVA as a function of temperature ranging from -45 to 125°C. (b) The dynamic mechanical analysis results of the storage moduli (E') and loss moduli (E'') of representative hydrogel 5% Fe₃O₄/PEDOT: PSS/PVA in 1 Hz, 5 Hz and 10 Hz.

Fig. S3. The mass loss of the multifunction hydrogels with (a) and without glycerol (b) placed in ambient conditions at 20 °C (\pm 5) and 30% (\pm 10%) humidity for 15 days. The relative resistance change (Δ R/R₀) of the multifunction hydrogel with (a) and without glycerol (b) placed in ambient conditions at 20 °C (\pm 5) and 30% (\pm 10%) humidity for 14 days.

Fig. S4. (a) The resistance signal of the hydrogel without glycerol was observed in the detection of 2000 loading-unloading cycles. (b) The stable and reproducible response of 5% Fe_3O_4 /PEDOT: PSS/PVA hydrogel was observed in the detection of 2000 loading-unloading cycles after three months.

Fig. S5. (a) The EMI shielding effectiveness of $5\%Fe_3O_4/PEDOT$: PSS/PVA multifunction hydrogels films with different thicknesses. (b) The EMI shielding effectiveness of $5\%Fe_3O_4/PEDOT$: PSS/PVA multifunction hydrogels in a different state.

Fig. S6. (a-d) The relative complex permittivity and permeability of 5% Fe_3O_4 /PEDOT: PSS/PVA multifunction hydrogels under the strain of 200%.

Fig. S7. The sensing performance of 5% Fe_3O_4 /PEDOT: PSS/PVA multifunction hydrogels work as Figure (a) and elbow joint (b). c) The hydrogel sensor assembled on the mechanical finger to monitor the motion by the manipulator in real-time.

Video S1 and S2 show the self-recovery performance of the 5% Fe3O4/PEDOT: PSS/PVA hydrogel after repeated stretching and compression for ten cycles.

Video S3 shows the monitoring of the manipulator using the hydrogel-based wearable sensor.

Video S4 shows that the hydrogel-based wearable sensor can control the toy car remotely by assembling into a smart glove.