SUPPORTING INFORMATION

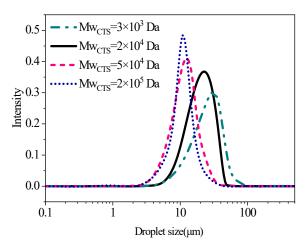
2 Effect of Chitosan Molecular Weight on CO₂-Triggered 3 Switching between Emulsification and Demulsification

4 Dongyin Ren¹, Zhixin Shang¹, Mei Zhang¹ and Zhenghe Xu^{2, 3}

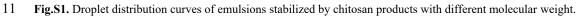
⁵ ^{a.} College of Textile and Clothing, Dezhou University, Dezhou, 253023, P. R. China

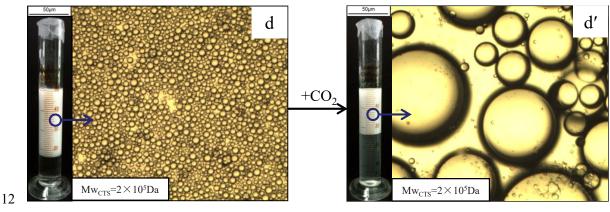
 $6^{\,}$ b. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China

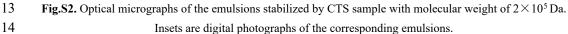
7 ^c Department of Materials Science and Engineering, Southern University of Science and Technology; Shenzhen 518055, China

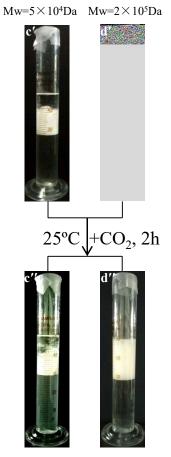

8

1

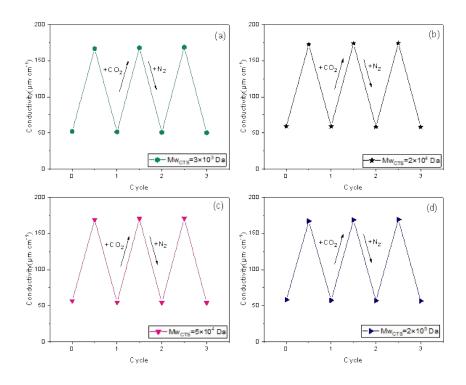

9


Tab. S1. Molecular weight of 4 chitosan samples.


Sample	Mn(g/mol)	Mw(g/mol)	PD
3×10 ³ Da CTS	3127	3280	1.05
2×10^4 Da CTS	19540	20910	1.07
5×10^4 Da CTS	51008	54541	1.07
2×10 ⁵ Da CTS	190330	218000	1.15



10



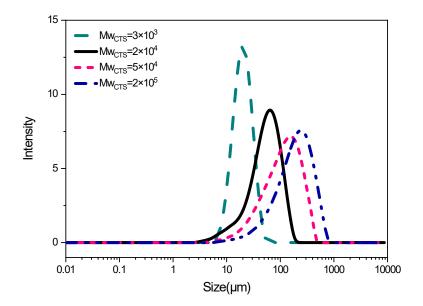
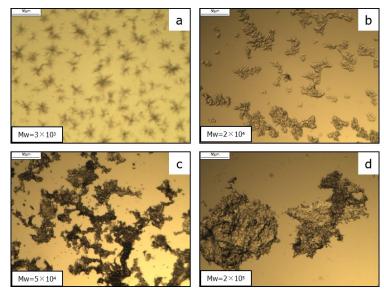
15

- 16 Fig.S3. CO_2 -switched demulsification of the emulsions formed by CTS with the molecular weight of 5×10^4 Da
- 17

and $2\!\times\!10^5\,\text{Da}$ after an extra 2 hours of bubbling CO_{2_\circ}

18

19 Fig.S4. Conductivities during repeated cycles of CTS samples with different molecular weight under CO₂/N₂.

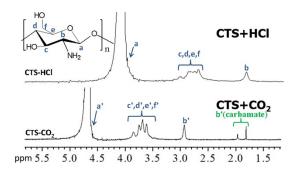


Fig. S5. Size distribution of chitosan with different molecular weights.

22 23

Fig. S6. Optical micrographs of CTS samples with different molecular weight.

24

25 Figure S7. The ¹HNMR of CTS-HCl (upper) and CTS-CO₂ (lower)

26 The measurements of ¹H NMR illustrate that the products in the stimulation of HCl and CO_2

27 are different. As shown in Fig.S7, compare with the ¹H NMR spectrum of CTS-HCl, all the H

28 peaks shift to lower fields in the ¹H NMR spectrum of CTS-CO₂; meanwhile, new peaks at 1.80 29 ppm and 1.95 ppm appears in the ¹H NMR spectrum of CTS-CO₂ which belongs to the -30 NHC(O)OH protons, represents clear evidence for CTS-carbamates formation.¹ 31

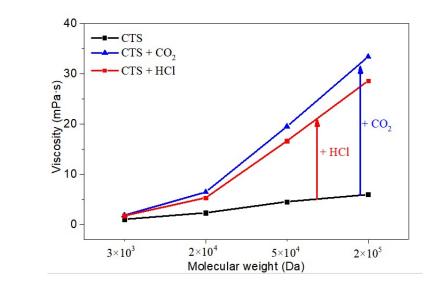
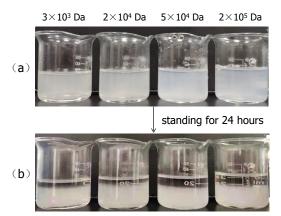



Fig.S8. The viscosity of CTS samples with different molecular weight treated by bubbling CO₂ and adding
 hydrochloric acid solution (0.01M).

36

32

35

Fig. R1 Photographs of CTS aqueous solutions freshly prepared (a) and after standing for 24 h (b), with molecular
 weight of CTS being given on top.

39

40 Fig. R1 (b) shows the precipitates of CTS at the bottom of the beakers after 24-h standing of the
41 solution, in contrast to milky dispersion of CTS aggregates in the freshly prepared aqueous
42 solutions as shown in Fig. R1 (a).

- 43
- 44 1. V. Stastny, A. Anderson and D. M. Rudkevich, Journal Of Organic Chemistry, 2006, 71, 8696-8705.
- 45