Supporting Information for "Morphologies and dynamics of the interfaces between active and passive phases"

Guoqing Xu,^{*a,b*} Tao Huang,^{*c*} Yilong Han,^{**d*} and Yong Chen ^{**a,b*}

^aCenter of Soft Matter Physics and Its Applications, Beihang University, Beijing, 100191, China.

^bSchool of Physics, Beihang University, Beijing, 100191, China.

^cInstitute of Physical and Engineering Science, Faculty of Science,

Kunming University of Science and Technology, Kunming 650093, Yunnan, China.

^dDepartment of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

Movies:

Movie 1: The rough sharp interface from t = -100 to 900 at Pe = 300 and $\rho = 0.7$.

Movie 2: Active particles are compressing the passive phase along the *x* direction during the interface propagation stage from t = 0 to 150 at Pe = 300 and $\rho = 0.7$.

Movie 3: Active (red) and passive (blue) particles form a single crystal near the interface without grain boundaries and dislocations during the relaxation stage (200 < t < 400) at Pe = 300 and $\rho = 0.7$. The white gap between two rows of several particles forms a slip line rapidly gliding along the lattice direction. A few percent of isolated passive particles are embedded in the active crystal, while active particles are rarely embedded in the passive crystal.

Movie 4: The rough invasive interface from t = -100 to 900 at Pe = 300 and $\rho = 0.4$.

Movie 5: The flat interdiffusive interface from t = -100 to 900 at Pe = 300 and $\rho = 0.2$.

Figure S1: Various active-inactive interfaces in 2D mixtures of active particles (red) and passive particles (blue) with different area fractions ρ and Péclet numbers Pe in the relaxation stage (t = 900).

Figure S2: Evolution of roughness $\omega(l = L, t)$ of the interface with the full length *L* in the *y* direction at (Pe, ρ) = (100,0.5), (100,0.7), and (300,0.7). $\omega(l = L, t)$ exhibit different power laws in the propagation and the relaxation stages.

Figure S3: Profiles of the total density of the active and passive particles along the *x* direction in the relaxation stage (t = 900) at different ρ and Pe values. (a) Pe is fixed at 100; (b) ρ is fixed at 0.7.

Figure S4: Interface roughness $\omega(l,t)$ at $(\text{Pe},\rho) = (100,0.5)$. $\omega(l,t) \sim l^{\alpha}$ with the fitted $\alpha = 0.81$ at $l \ll \xi(t)$. (b) $\omega(l = L,t) \propto t^{\beta}$ with the fitted $\beta = 0.28$ for the entire interface (l = L) and $\omega(l = 4, t) \propto t^{\kappa}$ with the fitted $\kappa = 0.06$ for a short section of the interface with length $l = 4 \ll \xi(t)$ in the propagation stage. In the relaxation stage, $\omega(t)$ decreases with a different exponent. (c) $\alpha(t)$ and $\xi(t)$ obtained by fitting $\omega(l,t)/t^{\beta} = (\frac{l}{\xi(t)})^{\alpha(t)}$ at $l \ll \xi(t)$ in (a). β is obtained from the fitting in (b). $\alpha(t)$ is nearly a constant of approximately 0.81. The fitted z = 3.97 obtained by fitting $\xi(t) \sim t^{\frac{1}{z}}$ is close to z = 3.68 obtained from the scale relation $z = \alpha/(\beta - \kappa)$.

Figure S5: Interface roughness $\omega(l,t)$ at $(\text{Pe},\rho) = (100,0.7)$. $\omega(l,t) \sim l^{\alpha}$ with the fitted $\alpha = 0.78$ at $l \ll \xi(t)$. (b) $\omega(l = L,t) \propto t^{\beta}$ with the fitted $\beta = 0.23$ for the entire interface (l = L) and $\omega(l = 4, t) \propto t^{\kappa}$ with the fitted $\kappa = 0.07$ for a short section of the interface with length $l = 4 \ll \xi(t)$ in the propagation stage. In the relaxation stage, $\omega(t)$ increases with a different exponent. (c) $\alpha(t)$ and $\xi(t)$ obtained by fitting $\omega(l,t)/t^{\beta} = (\frac{l}{\xi(t)})^{\alpha(t)}$ at $l \ll \xi(t)$ in (a). β is obtained from the fitting in (b). $\alpha(t)$ is nearly a constant of approximately 0.78. The fitted z = 5.27 obtained by fitting $\xi(t) \sim t^{\frac{1}{z}}$ is close to z = 4.88 obtained from the scale relation $z = \alpha/(\beta - \kappa)$.

Figure S6: The local morphology of the sharp active-passive interfaces in the relaxation stage (t = 900) at (Pe, ρ) = (100,0.7) in (a) and (300,0.7) in (b). The local slope of the interface becomes steeper at the higher Pe, i.e., higher activity, in (b).