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1 Image processing algorithms
1.1 Global displacement tracking
We describe here the global displacement tracking algorithm that
we use for the calibration of the oscillation frequency, for the char-
acterization of the deformation field, and for the registration of
sample drifts, including apparent ones due to synchronizations
errors.

The first step of the analysis consists in subtracting a back-
ground image IB(x) = IB(x,y) from the entire stack of images.
IB(x) is estimated as the temporal average IB(x) = 〈I(x, t)〉t of an
experimental acquisition performed imposing to the sample a de-
formation amplitude large enough that the signal associated with
the particles is completely averaged out, and only static features
remain, which are typically due to undesired objects (e.g. dust
particles on the camera sensor or the optics) in the optical path.

The displacement between two consecutive background-
corrected images is then estimated by locating the position of the
maximum of the spatial correlation function

c(x,y, t, t +∆t) = Σx0,y0 It(x0,y0)It+∆t(x0 + x,y0 + y). (1)

Ideally, a simple shear deformation acts on each shear-vorticity
plane as a rigid translation in the shear direction. As a result,
neglecting finite-size effects (a reasonable assumption as long as
the displacement is smaller than half of the image size) and out-
of-plane contributions, an image of a sheared sample collected at
time t +∆t is simply a translated version of the image at time t
It+∆t(x) = It(x+∆x,y+∆y). In this case, the correlation function
c(x,y, t, t+∆t) is expected to display a sharp peak centered around
(x,y) =−(∆x,∆y) (see Fig.S1). The spatial correlation function in
Eq.1 can be efficiently computed in the Fourier space, since the
convolution product simplifies to an algebraic product

c(x, t, t +∆t) = F−1{Ît(q)Î∗t+t0(q)}. (2)

Once we obtain the spatial correlation function between two im-
ages, we identify the position (xM ,yM) of the absolute maximum.
To reach sub-pixel precision, we consider the projection of the
correlation function on one axis (say, the x-axis) in a neighbor-
hood of the maximum:

c̄(x) = Σ
yM+δ

y=yM−δ
c(x,y), (3)
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where the half-amplitude δ of the considered interval along the
orthogonal direction y is set to δ = 4 pixels. A Gaussian is then
fitted to the obtained mono-dimensional profile

c̄(x) = a · e−(x−x̃M)2/2σ 2
+d. (4)

leading to the improved estimate x̃M of the maximum position.
The same procedure can be repeated along the orthogonal direc-
tion to get an improved estimate of the y-coordinate ỹM of the
maximum of the spatial correlation function. The sequence of
maximum positions x̃M(t) can be used to build the displacement
field ∆X(t) of the observed plane as function of time: ∆X(t) =
∑t ′≤t x̃M(t ′) .
For the characterization of the strain field and for the frequency

Fig. S1 Global displacement tracking algorithm a) Representative two-
dimensional cross-correlation function c(x,y) of two images of a sample
under shear collected at different times. The position of the peak (red
lines) can be easily identified with single pixel resolution. b,c) Fitting of
suitable projections c̄(y) and c̄(x) of c(x,y) on the main axes (symbols)
with a Gaussian model enable refining the estimate of the peak position.

calibration, ∆X(t) is fitted with a sinusoidal function. For echo-
DDM processing, we acquire mϕ images per period, and we con-
sider mϕ separated stacks. The algorithm is applied to each stack
to measure the combination of real and apparent drift for each
phase ϕ. This information is used to minimize the effect of the
drift in each echo sequence via the stack registration procedure
described in the next subsection.

Journal Name, [year], [vol.],1–6 | 1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2021



1.2 Registration algorithm

Image stack registration consists in correcting each image I(x,y)
in the sequence by applying a rigid translation (∆x,∆y) compen-
sating the (previously determined) drift. Similar to what is done
in Ref.1, this compensation is performed in the Fourier domain
via the following transformation

I(x,y)−→ e jψ(∆x,∆y)F−1{M(qx,qy) ·F{I(x,y)}}, (5)

where M(qx,qy) = ei(qx∆x+qy∆y), ψ(∆x,∆y) = π(∆x + ∆y− b∆x +
∆yc), and bxc indicates the integer part of x.

The starting image size is 512 x 512 pixels. After registration,
only a central portion of each image, of size 384 x 384 pixels, is
considered to avoid artifacts at the boundaries.

Before running DDM analysis on the cropped stack, a spatial
windowing filter is applied, as described in2.

2 Synchronization of oscillatory deformation
and image acquisition

2.1 Characterization of the oscillation frequency

In our set-up, the shear-cell and the camera are controlled by
two different computers. The synchronization of the two devices
requires, as a first step, characterizing the frequency of the shear-
cell in terms of the clock of the camera’s computer. To this end,
we performed a series of tests without the sample, measuring the
displacement of the top plate under oscillation at the nominal
frequency of 1 Hz. By fitting a harmonic function to the displace-
ment, we accurately measure the actual oscillation frequency for
different values of the displacement amplitude.

Fig. S2 Actual oscillation frequency. Main panel: Frequency of os-
cillation as a function of the amplitude for nominal frequency 1 Hz. In-
set: histogram of the deviations of single experiment realizations from
the mean value δ f (A) = fi(A)− f̄ (A), the width of the distribution is
σδ f ∼ 10−5Hz.

In the main panel of Fig.S2, we report f̄ (A), the best esti-
mate for the measured oscillation frequency for a given oscilla-
tion amplitude A. In the inset, we show the distribution of the
frequency fi(A) measured in different replicas of the same exper-
iments, once subtracted to its mean value f̄ (A). The experiment-

to-experiment variability can be estimated as the standard devia-
tion σδ f of the distribution σδ f ∼ 10−5Hz.

2.2 Matching the shear-cell frequency and the image acqui-
sition frequency

As described in the main text, our echo protocol requires acquir-
ing mϕ images per period. Once we determine the actual oscil-
lation frequency f̄ (A) for a given displacement amplitude A, we
must fix the delay time t0 = 1/ν between two consecutive im-
ages so that it meets the condition mϕ · t0 = 1/ f̄ (A). The time
delay t0 can be set with a maximum precision of 0.01 ms. For
each deformation amplitude A, we choose the optimal pair t0 and
mϕ ∈ {4,5,6,7,8} that enables minimizing the rounding error

δνround = |ν/mϕ − f̄ (A)|. (6)

The result of this optimization procedure typically provides a
rounding error δνround/ν = O(10−5), which is comparable with
the intrinsic variability of f (A) (see previous subsection). The ef-
fect of this residual error on the measurements performed on the
samples is discussed in the next subsection.

2.3 Residual apparent drift

Fig. S3 Apparent Displacement. Top panel: displacement ∆X(T ;ϕ)

due to the frequency mismatch, each line correspond to a different start-
ing phase of the oscillation ϕ. Bottom panel: apparent drift velocity as
function of the starting phase ϕ.

In the top panel of Fig.S3 we report the phase-dependent dis-
placements ∆Xϕ (t) measured in a representative experiment on
the Sylgard sample subject to an oscillatory deformation with
shear amplitude γ0 = 75%. In the bottom panel of Fig.S3 we plot
the apparent drift velocity (estimated by fitting a linear model to
the curves shown in the upper panel) as a function of the phase
ϕ. Consistently with the discussion reported in Sect. 2.4.3 of the
main text, the apparent drift velocity display an harmonic depen-
dence on ϕ

v(ϕ) =VD · sin(ϕ +φ0) = A(z) ·∆ω · sin(ϕ +φ0), (7)

where A(z) is the displacement amplitude on the observed plane
and ∆ω is the difference between the oscillation frequency and
the acquisition frequency, multiplied by 2π. From VD we can
measure the frequency mismatch ∆ω associated to the single ex-
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periment, and we can compare this value with the one expected
according to the previously estimated errors δνround and σδ f . In
figure S4 we plot the measured drift velocities VD (blue symbols)
and the one expected from the systematic synchronization errors
in both linear (panel a) and semi-logarithmic scale (panel b). A
generally good agreement is observed between the experimen-
tal drift velocity (blue symbols) and the predicted one (red sym-
bols). In the panel (c) we plot the measured velocity versus the
expected one. Over more than two decades in VP, the accuracy of
the prediction is approximately within a factor 2 (marked by light
blue dashed lines), and this is due to the intrinsic experiment-to-
experiment frequency variability.

Fig. S4 Prediction of the apparent drift velocity. Panel (a): apparent
drift velocity V (as defined in the main text Eq.7) as function of the
imposed amplitude (blue symbols). Orange symbols represent the values
predicted based on the frequency mismatch. Panel (b): same as (a),
where a semi-logarithmic scale is adopted. The region comprised between
the blue (orange) dotted lines corresponds to the values compatible with
the prediction within a factor of 2 (4). Panel (c): measured drift velocity
as function of the predicted one. The dotted lines are as in panel (b).

We conclude that we can quantitatively attribute the residual
apparent drift to two causes: the rounding error (due to limited
temporal resolution of the camera), and the intrinsic experiment
to experiment variability of the actual deformation frequency.

2.4 Residual effect of beat

The registration procedure described above cures the apparent
drifts due to synchronization errors in a satisfactory way, yet not
perfectly. For sake of completeness, we briefly discuss here also
this effect. A more extended treatment can be found in Refs.1,3.
A small residual contribution due to the frequency mismatch is
still visible on the dynamic-structure-functions in the form of an
anisotropic pattern. This can be understood by considering the
finite depth of focus of the imaging system (sec. 4.1), i.e. that
an image represent a sort of "projection" of a three-dimensional
region on a two-dimensional plane. In other terms, an image
does not include only particles lying exactly on the focal plane z f ,
but also particles slightly below and above it. If we consider now
the effect of these multiple contributions in the light of Eq.7, we
find that, since the amplitude depends on the vertical coordinate
A = A(z), so does the drift velocity v(ϕ)

v(ϕ,z) = A(z) ·∆ω · sin(ϕ +φ0). (8)

As a consequence, in the presence of a non-perfectly synchronized
acquisition, the fact that particles on different planes move with
slightly different velocity becomes apparent: in fact, the registra-
tion effectively removes the displacement of the particles in the
focal plane A(z f )sin(∆ωt +ϕ), but does not work as well for par-
ticles that are out of focus, which exhibit a residual motion.

An estimate of the maximum residual relative velocity between
particles that are below the focal plane and those that are above
it (i.e. between particles that are at the edges of a region of thick-
ness 2L f centered at the focal plane) is given by (see also Sect.4.1
below):

vR(ϕ) = v(ϕ,z f +L f )− v(ϕ,z f −L f ) =(
A(z f +L f )−A(z f −L f )

)
·∆ω · sin(ϕ +φ0) =

2γ(z f )L f ·∆ω · sin(ϕ +φ0).

(9)

The residual drift velocity vR does not depend on the vertical co-
ordinate of the focal plane but only on γ(z f ) and on the depth of
focus L f . We also note that using equations 7 and 9, it is possible
to express vR as a function of the focal plane apparent displace-
ment vD: vR = αvD, where α = 2γ(z f )L f /A(z) = 2L f /z f . Since
L f ∼ O(10)µm (see Sect.4.1 below), and the focal plane coordi-
nate z f = 250 µm, the factor α is of order 0.1, which is compatible
with the results in Fig. 6 of the main text.

3 Real Drifts
In Fig.S5 we report the absolute value of the measured drift ve-
locity for the four samples considered in this study. As expected,
the drift velocity V for the elastic sample (Sylgard) is negligible
(V < 5nm/s), and almost independent of the shear amplitude. In
all the other samples, we do observe a small net flow, whose ve-
locity depends on the shear amplitude. For the fluid-like samples,
the drift velocity attains a finite value at small shear amplitudes,
while for the yield stress fluid (Carbopol) the drift velocity quickly
drops to values comparable with the solid sample as the ampli-
tude is reduced.

Fig. S5 Drift velocities. Symbols: absolute values of the estimated
drift velocities measured for the four sample considered in this study as
a function of the amplitude of the displacement imposed on the moving
plate. Lines are guidelines for the eyes.
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4 Microscopy set-up

4.1 Depth-of-focus

The depth of focus (DOF) of an imaging system is the minimum
vertical displacement ∆z along the optical axis direction to ob-
tain an image that is no longer significantly correlated with the
initial one. This concept can be made more precise by adopting
different specific correlators, either in real or reciprocal space3,4.
Working in the Fourier space has the advantage that, as long as
the image-forming process is linear, each spatial mode decorre-
lates independently of the others and this enables estimating a
wavevector-dependent DOF which is independent of the specific
spectral content of the image. From a stack of images acquired at
different vertical coordinates z in static sample, we consider the
following correlation function

c(q,∆z) =
〈Î(q,z0) · Î∗(q,z0−∆z)〉|q|=q

|Ĩ(q̂,z0)|2
, (10)

where z0 identifies the plane where the Kohler illumination condi-
tion is realized4, chosen to be in the middle of the gap: z0 = h/2.
Fitting an exponential function to each of the correlation func-
tions in Eq.10 enables extracting for each q-value an estimate
of the correlation length, which provides an estimate for the q-
resolved DOF L f (q). In Fig.S6 we report the obtained L f (q) for
two different illumination conditions: completely open (red sym-
bols) and completely closed (blue symbols) aperture diaphragm.
The sample is the same elastomer (Sylgard) with embedded
tracer particles used in the experiments described in the main
text. As expected, the DOF decreases more rapidly with q as
the size of the aperture diaphragm is increased. The range of

Fig. S6 Experimental determination of the depth of focus (DOF)
of the opticola system. Symbols: q-resolved DOF L f (q) measured with
closed (blue symbols) and opened (red symbols) aperture diaphragm.
The dashed lines are guide At small wave-vectors the estimated DOF
saturates to a plateau value due to the finite gap width h.

wave-vectors considered in the experiments is typically [0.2,3]
µm−1. In the completely open diaphragm case, which corre-
sponds to the working condition adopted in our experiments, for
q > 0.3 µm−1 the correlation length is always shorter than 20 µm,
rapidly falling below 2 µm for q > 0.5 µm−1.

4.2 Alignment of the confining plates

The accurate characterization of the microscopic state of a sam-
ple under macroscopic shear requires an extremely precise con-
trol on the mechanical conditions. To produce a simple shear de-
formation in our parallel plate geometry, two basic requirements
must be fulfilled: the two plates must be parallel, and the trans-
lation of the moving plate must take place without variations in
the distance between the plates. In this subsection, we describe
the adopted two-step alignment procedure.

In the first step, in the absence of any samples, the vertical po-
sition of the objective is adjusted in such a way to provide a sharp
image of the top moving slide, defining the reference position z0.
Then, a displacement of ±1mm is imposed on the slide. By using
the graduated scale on the knob controlling the vertical position
of the objective, we measure the amplitude ∆z = |z+− z−| of the
displacement of the slide along the optical axis. We then recur-
sively act on the micrometric screws described in Ref.5 to adjust
the orientation of the slide. A satisfactory alignment is obtained
when ∆z < 2µm. In this condition, when a strain γ0 = 200% is
imposed on a sample of thickness h = 500 µm, the maximum spu-
rious sample compression (expansion) corresponds to a normal
strain ε = ∆z/h = 0.2%.

The second step is aimed at making the bottom plate parallel
to the top one. To this end, we orient the position of the bot-
tom plane through the built-in system of screws, and we monitor
the angle between the two plates with an interferometric system.
We adopt here an interferometric technique similar to the one
described in Ref.6, adapted to ensure compatibility with the mi-
croscope ports. A very simple implementation, which however
requires removing all the lenses present along the optical path
of the microscope, is the following. A collimated laser beam of
wavelength λL is sent through the microscope back-port (which
is normally used for epi-illumination), it is reflected by the beam
splitter and impinges on the two plates. Two reflected beams are
generated, which are reflected again by the beam splitter toward
the camera sensor, where they produce an interference pattern. If
the slides are tilted by an angle θx, the camera detects a pattern of
fringes with wavelength Λx sin(θx) = λL/2. Using the micrometric
screws we adjust the orientation of the bottom plate with the aim
of maximizing Λx. We obtain the best alignment when the fringes
are no longer visible, i.e. when Λx exceeds the sensor size:

Λx > sensor size = 1 mm, (11)

which means that θx ≤ λL/Λx = 2 · 10−3rad. In our experiments,
we opt for a slightly different implementation that does not re-
quire removing any element from the optical path of the micro-
scope. We use a low magnification objective (2x) and insert a
suitable diverging lens close to the microscope back-port in order
to obtain, at least approximately, a collimated illumination of the
shear-cell plates. The microscope objective introduces a magni-
fication factor M = 2 in the collected diffraction pattern, leading
to a two-fold reduction in the size of the accessible field of view
Λx −→ Λ′x = Λx/2. According to the argument sketched above, in
this configuration the alignment accuracy can be thus estimated
as θ ′x = λL/Λ′x ≤ 4 ·10−3rad.
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5 Stationarity of the deformation profile
For all the samples considered in this study, the stationarity of the
deformation profile during a single experiment (whose typical du-
ration is 400 s) was checked by repeating multiple times (at least
three) the z-scan procedure described in Sect. 2.3 of the main
text. In the Fig.S7, we report the results of three z-scans, per-
formed in quick succession on the Sylgard sample under an oscil-
latory shear deformation with strain amplitude γ0 = 75%. As it can
be appreciated, the three scans are almost indistinguishable, con-
firming the absence of time evolution in the deformation profile
over the investigated time window, and the good reproducibility
in the vertical positioning of the objective, which is controlled by
a rotating wheel equipped with a graduated scale. Similar results

Fig. S7 Stationarity of the deformation profile. Symbols: recon-
structed displacement profiles in the Sylgard sample, obtained from three
independent measurements performed in quick succession during an os-
cillatory shear experiment. Lines are best fitting curves with a linear
model.

holds for the other samples.

6 Rheological characterization of the Car-
bopol sample

The Carbopol sample considered in this study exhibits the typ-
ical yield stress fluid-response to an oscillatory perturbation, as
confirmed by an amplitude sweep experiment performed with an
Anton-Paar (MCR301) rheometer at an oscillation frequency of
1 Hz (Fig.S8). The yield strain, estimated as the strain ampli-
tude at which the storage and the loss moduli become equal7–9

is about 60%, while the onset of non-linear response occurs for
γ0 > 2−3%.

7 Tracer dynamics in the Carbopol sample
at rest

Even in the absence of external forcing, PS2 tracer particles dis-
persed in the Carbopol exhibit a non-negligible, although ex-
tremely slow, dynamics that we characterized with standard
DDM. Over the time window [1−100] s considered in our experi-
ment, the ISFs are far from reaching a complete decorrelation, as
it can be appreciated from Fig.S9.

Fig. S8 Amplitude sweep experiment on the Carbopol sample. Stor-
age and loss moduli G′(γ),G′′(γ) are plotted as a function of the imposed
strain amplitude γ0. We can identify a linear region where the viscoelastic
moduli are independent on the shear amplitude (γ0 < 1%), a wide transi-
tion region where the response is still dominated by the elastic modulus
and the moduli depends on the shear amplitude (1% < γ0 < 60%), a ter-
minal "fluid-like" region where the response is dominated by the loss
modulus (γ0 > γC ' 60%).

Fig. S9 Tracer dynamics at rest in Carbopol. Symbols: representa-
tive ISFs for different q-values in the range [0.15− 2.2]µm−1 along two
perpendicular directions x (left), y (right). Continuous lines are best fit-
ting curves with the model fi(q,∆t) = e−Γ(q)∆t . In the insets the ISFs are
plotted as a function of q2∆t. The good overlap of the rescaled interme-
diate scattering functions suggest compatibility with a very slow diffusive
dynamics.

The fact that only a small fraction of the decay of the ISFs is
observed for all accessible q-values makes the estimate of the
corresponding diffusion coefficient Drest extremely noisy. Fit-
ting the model fi(q,∆t) = e−Γ(q)∆t to the data provides the value
Drest ' (1.5±1) ·10−5µm2/s. Within the experimental error, the
tracer dynamics is identical along the two considered directions.
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