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1 Observation

1.1 Particle imaging and tracking

0 200 400 600 800 1000 1200

x (px.)

0

200

400

600

y 
(p

x.
)

Figure S1: Optical micrograph of PS particles levitating at the nodal plane from the first optimal
experiment in the sequence shown in Figures 5 and 6. Scale bar is 250 µm (1 pixel = 2.14 µm).
The particles appear somewhat blurry because the focal plane of the microscope is positioned ca.
15 µm above the height of the particles. This choice ensures that the apparent particle size y varies
linearly with their height h (see Figure S2 below). Some particles aggregate at the nodal plane
due to lateral radiation forces caused by heterogeneity in the acoustic field. Only isolated particles
(colored circles) are considered in our analysis.
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1.2 Linear relation between particle height h and size y

To quantify the relationship between the particle size y returned by TrackPy and the particle height
h within the acoustic cell, we measured the apparent size of a particle as a function of time during
its steady sedimentation through the focal plane of the microscope. Figure S2 shows the result of
this analysis for 4 different particles. During sedimentation, the height of the particle varies linearly
with time as h = h0 − Ut where U = 6.1 µm/s is the estimated speed of particle sedimentation.
Using this estimate, Figure S2 shows the particle size as a function of height h measured relative
to the focal plane hfp where the apparent size is minimal. During our experiments, we position the
focal plane ca. 15 µm above the nodal plane of the acoustic field. Consequently, all measurements
are conducted within the shaded region of Figure S2 where the relationship between size y and
height h is approximately linear.

Figure S2: Particle size y as a function of time (top axis) for four PS particles sedimenting through
the focal plane of the microscope. The bottom axis shows the particle height h − hfp relative to
that of the focal plane using an estimated sedimentation speed of U = 6.6 µm/s. All measurements
reported the main text are made within the shaded region, where the relationship between y and
h is approximately linear (dashed black line).
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2 Inference

2.1 Marginalizing over φij

To facilitate analysis of the full probability model, it is convenient to marginalize over the particle
parameters φij to obtain

p(θ,λ,y | d) = p(θ)

Ne∏
i=1

Np∏
j=1

p(λij | θ,di)p(yij | λij ,di) (S1)

where the marginal likelihood for the data yij for particle j in experiment i is given by

p(yij | λij) =

∫
p(yij | λij ,φij ,di)p(φij)dφij (S2)

This integral can be performed analytically using the properties of the multivariate normal distri-
bution. In the analysis below, we omit temporarily the subscripts ij to streamline the notation.

We first consider the posterior distribution for the parameters p(φ | y, λ), which can be obtained
using standard methods of linear regression. Using Bayes theorem, the posterior is given by

p(φ | y, λ) =
p(y | φ, λ)p(φ)

p(y | λ)
(S3)

Substituting the likelihood and the prior, the posterior can be expressed as

p(φ | y, λ) = c exp
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)
exp
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) (S4)

where X is the 2×Nt design matrix, Σ is the prior covariance matrix, φo = AXy/s2 is the posterior
mean, A = (Σ−1 +XX>/s2)−1 is the posterior convariance matrix, and the normalization constant
is c = 1/p(y | λ)(2πs2)Nt/2|2πΣ|1/2. Integrating over the nuisance parameters φ, one obtains the
the following expression for the marginal likelihood

p(y | λ) =
1

(2πs2)Nt/2

|A|1/2

|Σ|1/2
exp

(
−y>y

2s2
+

1

2
φ>o A

−1φo

)
(S5)

This result applies independently to each particle j and experiment i.

2.2 Marginalizing over λ

Marginalizing over λ is more challenging as the likelihood p(y | λ) of equation (S5) is, in general,
a complex function of λ.1 However, for effective designs, this function is well approximated by a
lognormal distribution

p(y | λ) ≈ cλ Lognormal(λ | µλ, σ2λ) (S6)

1As in the previous section, we omit the subscripts i and j throughout this section; these results apply to each
experiment i and particle j.
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Figure S3: Analysis of simulated data illustrating the marginalization over φ = {a, b}. (a)
Simulated size data y as a function of time for three different relaxation rates λ. Markers are the
Nt = 64 simulated data points with noise level s = 0.1 pixels; the solid curves show the predicted
behavior for the MAP parameters. The constant time step is ∆t = 1 ms. The prior standard
deviations for a and b are σa = σb = 2 pixels. (b) Posterior distributions for the asymptotic size a
and the size change b for the three data sets in (a) fitted using the true values for λ. The dashed
lines show the true values used to generate the data: a = 1 pixel and b = 1 pixel.

where the data-dependent quantities cλ, µλ, and σ2λ serve as sufficient statistics for each particle j
in experiment i. With this approximation, one can marginalize over λ analytically as

p(y | θ,d) =

∫
p(y | λ)p(λ | θ,d)dλ

=
cλ

(2π(σ2λ + σ2))1/2
exp

(
−

(µλ − µ)2 + 2µσ2λ + 2µλσ
2 − σ2λσ2

2(σ2λ + σ2)

) (S7)

where the parameters cλ, µλ, and σλ depend on the data y while the quantities µ and σ depend
on the global parameters θ.

The approximation of equation (S6) is performed by numerical computation of the zeroth, first,
and second moments of p(y | λ) within a specified range λmin < λ < λmax. Specifically, the
parameters cλ, µλ, and σ2λ are defined as

cλ =

∫ λmax

λmin

p(y | λ)dλ (S8)

µλ =
1

cλ

∫ λmax

λmin

lnλ p(y | λ)dλ (S9)

σ2λ =
1

cλ

∫ λmax

λmin

(lnλ− µλ)2 p(y | λ)dλ (S10)

Figure S4 illustrates the performance of this approximation for three different values of the decay
rate λ.

We set the upper limit of the integral to λmax = 100/∆t where ∆t is the interval between
successive time points. The value of 100 is selected to ensure an uninformative measurement (large
σλ) when λ > ∆t−1. In the limit of large λ, the marginal log-likelihood has the asymptotic form:
ln p(y | λ) = b0 + b1e

−λt + . . . for λ > 1. For small λ, the marginal log-likelihood approaches a
constant value as ln p(y | λ) = c0 + c1λ + c2λ

2 + . . . , which is valid when λ � c1/c2. We use this
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approximation to select λmin such that the deviation of ln p(y | λ) from its asymptotic value of c0
is equal to a specified tolerance of 10−3. The moment integrals are computed numerically using the
cubature package for adaptive integration in Python.1
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Figure S4: (a) Marginal likelihood p(y | λ) for the simulated data in Figure S3a. The height of each
curve is scaled to one. (b) Marginal likelihood p(y | lnλ) = λp(y | λ) parameterized by the logarithm
of λ along with the log-normal fit of equation (S6) (dotted curve). With this parameterization the
fits are proportional to the familiar bell-shaped curve of the normal distribution. The vertical
dashed lines show the parameter µλ. The distributions are normalized to unity with respect to
integration over lnλ.

2.3 Estimating the evidence p(y | d)

In evaluating the information gain of an experiment—actual or simulated—we require the marginal
likelihood (also called the evidence)

p(y | d) =

∫
p(y | θ,d)p(θ)dθ (S11)

We approximate the evidence from the posterior parameter samples using the Monte Carlo algo-
rithm of Heavens et al.2 We first apply a linear whitening transformation to the sampled parameters
{θm} such that the resulting covariance matrix of the transformed parameters {θ̃m} is equal to the
identity matrix. Briefly, we compute the eigendecomposition of the covariance matrix

C = 〈(θ − θ̄)(θ − θ̄)T 〉 = QΛQT (S12)

where the angled brackets denote sample averages, θ̄ = 〈θ〉 is the sample mean, Q is an orthogonal
matrix of eigenvectors, and Λ is a diagonal matrix of eigenvalues. The whitened parameters are
then evaluated as

θ̃ = Λ−1/2QT (θ − θ̄) (S13)

Second, we compute the 1st nearest neighbor distances {D̃n} from each of the Nθ transformed
parameters {θ̃m} (using the scikit-learn library). The maximum posterior value of the evidence
E = p(y) is then given by

Eo =
Nθ

√
det(Λ)

Nθ + 1

Nθ∑
n=1

Vm(D̃n)p(y | θn)p(θn) (S14)
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where Vm(D) = πm/2Dm/Γ(1 + m/2) is the volume of the m-ball of radius D (here, m = 4
corresponding to the four parameters of interest). Note that values of the un-normalized posterior
p(y|θn)p(θn) are saved during MCMC sampling and need not be evaluated twice. The variance of
the posterior is approximately, σ2E ≈ E2

o/Nθ, assuming the sampled parameters are independent of
one another.
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3 Design

3.1 Two-stage design process

As described in the Methods, we select the design d̃ for the next experiment that maximizes the
mutual information between the future outcome ỹ of that experiment and the cell level parameters
θ

d? = arg maxU(d̃) with U(d̃) = I(ỹ;θ) (S15)

The Venn diagram of Figure S5 illustrates the relationships of various information measures asso-
ciated with the three model variables θ, λ̃, and ỹ. Using these relationships, the objective function
U(d̃) can be expressed by differences between a mutual information and a conditional mutual
information as

U(d̃) = I(θ; λ̃)− I(θ; λ̃ | ỹ) = I(λ̃; ỹ)− I(λ̃; ỹ | θ) (S16)

where I(θ; λ̃) depends only on the frequency ω̃, and the other terms depend on both the frequency
ω̃ and the frame rate f̃ .

The information shared between the data ỹ and the parameters θ is transmitted by way of
the latent variable λ̃ (Fig. S5). The transmission of information along such a linear chain is often
determined by an information “bottleneck”, which limits the amount of information shared. Here,
the bottleneck is the relationship between the cell-level parameters θ and the latent rate parameters
λ̃, such that U(d̃) ≈ I(λ̃;θ) for near optimal designs. As the mutual information I(λ̃;θ) depends
on the frequency ω̃ but not the frame rate f̃ , we first identify the optimal frequency using the
approximate procedure

ω? ≈ arg max
ω̃

I(λ̃;θ) (S17)

where I(λ̃;θ) is approximated using nested Monte Carlo integration (see Methods).

θ

y

I(θ;y)H(θ|y) H(y|θ)

H(y)H(θ)
θ

λ

y

H(θ|λ,y)

H(y)H(θ)

H(λ)

I(λ;y|θ)
H(λ|θ,y)

I(θ;λ|y)

H(y|θ,λ)0

Figure S5: (left) Venn diagram showing information measures associated with the model variables
θ and y. The circle on the left is the entropy H(θ), with the conditional entropy H(θ | y) in
purple. The circle on the entropy is H(y), with the the conditional entropy H(y | θ) in green.
The overlap region between the two circles is the mutual information I(θ; y). (right) Venn diagram
showing information measures associated with three model variables θ, λ, and y. The conditional
independence between the data y and the cell parameters θ given the rate parameter λ implies
that the conditional information I(θ; y | λ) is zero (grey region). The expected utility is the central
overlapping region, U = I(θ; y).
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In the second stage of the design process, the optimal frame rate f? can be determined by
minimizing the second term of equation (S16) evaluated at the optimal frequency ω?

f? = arg min
f̃

I(λ̃;θ | ỹ) (S18)

Importantly, it is not essential to identify the “optimal” frame rate but rather a“good” frame rate
for which I(λ̃;θ | ỹ) � I(λ̃;θ). Under these conditions, the expected utility of the experiment is
determined by the information bottleneck—namely, the relationship between the cell parameters θ̃
and the rate parameters λ̃ independent of f̃ . For this reason, we approximate the optimal frame
rate using a more convenient objective function

f? ≈ arg max
f̃

I(λ̃; ỹ) (S19)

where I(λ̃; ỹ) is estimated using nested Monte Carlo integration (see Methods). By choosing the
frame rate that maximizes the information shared between the rate parameter λ̃ and the data ỹ,
we ensure that this relationship is not the bottleneck between the cell parameters θ and the data
ỹ.

The intuition underlying this heuristic is illustrated by a simple example containing three normal
variables x, y, and z within a linear Bayesian network: x→ y → z. The joint distribution of these
variables is

p(x, y, z | σx, σy, σz) = N (x | 0, σ2x)N (y | x, σ2y)N (z | y, σ2z) (S20)

which is a multivariate normal distribution with zero mean. Without loss of generality, we can
set σx = 1 such that each variable is measured in units of σx. The amount of information shared
between the variables x and z is determined by the two parameters σy and σz, which characterize
the respective relationships between x and y and between y and z

I(x; z) = −1

2
ln

(
1− σ2x

σ2x + σ2y + σ2z

)
(S21)

Figure S6 shows how this and other information measures depend on the parameter σz when σy

is held constant. When σz falls below some critical value (namely, when σ2z � σy
√
σ2x + σ2y),

the mutual information I(x; z) is no longer influenced by this parameter. Under these conditions
the relationship between x and y becomes the information bottleneck, and the overall objective
function is well approximated as I(x; z) ≈ I(x; y). Moreover, we see that this desired outcome can
be achieved by maximizing I(y; z) with respect to σz.
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Figure S6: Various information measures among the variables x, y, z as a function of the parameter
σz for the Gaussian Bayesian network show at the right with joint distribution given by equation
(S20) with σx = 1 and σy = 0.2. These measures are related as I(x; z) = I(x; y) − I(x; y | z) =
I(y; z)− I(y; z | x).
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4 Automated optimal experiments

4.1 Size data for nine optimal experiments
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Figure S7: Raw data for particle sizes vs. time for an automated series of nine optimal experi-
ments (corresponding to those in Figs. 5 & 6). For each experiment, the different colored markers
correspond to the different tracked particles. The number of tracked particles Np typically decreases
from one experiment to the next as particles begin to aggregate at the nodal plane (see Fig. S1).
The number of time points for each experiment is fixed at Nt = 100 although the frame rate, and
thereby the total observation time, may vary.
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4.2 Inference and design for nine optimal experiments
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Figure S8: Inference and design in an automated series of eight optimal experiments (correspond-
ing to those in Fig. S7 and Figs. 5 & 6). Predicted rate parameter λ(ω) as a function of frequency
ω based on the posterior distribution for each experiment. Each purple curve is evaluated using
equation (5) with parameter values α, β, γ drawn from the posterior distribution. Markers show
estimates of the rate parameter λij for each experiment i and particle j. The solid black curve
represents the expected utility U of a subsequent experiment as a function of the driving frequency.
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