Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2021

Moderate conformational transition promotes the formation of a self-reinforced highly oriented silk fibroin network structure

Ting Shu,⁺ Jing Cui,⁺ Zhuochen Lv, Leitao Cao, Jing Ren, and Shengjie Ling^{*}

School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China

The PDF file includes:

- Figure S1. Conformation transition process and deconvolution results of the amide I band of SFMs.
- Figure S2. TR-FTIR imaging of SFMs during ethanol and PEG solution penetration.
- Figure S3. Structure of MT-SFMs.
- Table S1. The number of molecules for several polyAG solution with ethanol coagulation bath.
- Table S2. The number of molecules for several polyAG solution with PEG coagulation bath.
- Table S3. The mechanical properties of WS-SFFs.
- Table S4. The mechanical properties of MT-SFMs and their control samples in dry state.
- Table S5. The mechanical properties of MT-SFMs and their control samples in wet state.

Other Supplementary Material for this manuscript includes the following:

• Movie S1. The mechanical training process of SFMs under the polarized light.

Movie S1. The mechanical training process of SFMs under the polarized light.

Description: The two ends of the rectangle SFMs was fixed on the self-made mechanical training device under two

orthogonality polarizers. At first, SFMs is dull under the polarized light. Then, the birefringence fringes were appeared

and gradual strengthened as the mechanical time increased. Meanwhile, the color of SFMs changed during this

process, with changing from white to yellow, to purple-red and further to blue.

Abbreviations

Abbreviation	Full name
HOMNS	Highly oriented molecular network structure
WS-SFFs	Wet-spun silk fibroin fibers

SFMs	Silk fibroin materials	
MD	Molecular dynamic	
MT	Mechanical training	
FA	Formic acid	
PEG	Polyethylene glycol	
SFFs	Silk fibroin fibers	
	Time-resolved Fourier transform infrared	
IR-FIIK	spectroscopy	
RESP	Restrained electrostatic potential	
VMD	Visual Molecular Dynamics	
	SFMs produced by mechanical training in ethanol	
ET-MT-SEMS	solution	
	SFMs produced by mechanical training in PEG	
PEG-IVIT-SFIVIS	solution	
ET-WS-SFFs	SFFs produced by wet spinning in ethanol solution	
PEG-WS-SFFs	SFFs produced by wet spinning in PEG solution	
WAXS	Wide-angle X-ray scattering	
SAXS	Small-angle X-ray scattering	
polyAG	single Ac-(AG) ₆ -NHMe peptide chain	

Fig. S1. Conformation transition and deconvolution results of the amide I band of SFMs. TR-FTIR spectra (A) and difference spectra (B) of SFMs from beginning to 30 min after the addition of 75vol% aqueous ethanol. Deconvolution results of the FTIR spectra of SFMs treated with 75vol% aqueous ethanol for 2 min (C) and 20 min (D), and treated with 20wt% aqueous PEG solution for 20 min (E). (F) Deconvolution results of the FTIR spectra of initial SFMs (dry

treated by 75 vol% aqueous ethanol solution at different times by integration of the amide I band (A) and the corresponding FTIR spectra (B). Univariate imaging maps of the SFMs treated by 20 wt% aqueous PEG solution at different times by integration of the amide I band (C) and the corresponding FTIR spectra (D). The FTIR spectra were obtained at the position of the white line in the imaging map.

Fig. S3. Structure of MT-SFMs. (A) Deconvolution result of WAXS pattern of ET-MT-SFMs. (B) The measured scattering

intensity vs. Azimuthal angle curves of the WAXS pattern of MT-SFMs at 14.8 nm⁻¹ (shown in Figure 5D and 5E).

Fig. S4. Transmission electron microscopy image of silk protein solution

Table S1. The number of molecules for several polyAG solution with ethanol coagulation bath.

Ethanol coagulation bath	6-polyAG	9-polyAG	12-polyAG	15-polyAG
No. of polyAG	6	9	12	15
No. of Ca ²⁺ /Cl ⁻	15/30	23/46	30/60	38/76
No. of ethanol	351	832	832	1625
No. of water	960	1744	2051	3147

Table S2. The number of molecules for several polyAG solution with PEG coagulation bath.

PEG coagulation bath	6-polyAG	9-polyAG	12-polyAG	15-polyAG
No. of polyAG	6	9	12	15
No. of Ca ²⁺ /Cl ⁻	15/30	23/46	30/60	38/76
No. of PEG	1	2	2	3
No. of water	1053	1800	2107	2854

Table S3. The mechanical properties of WS-SFFs.

	Strength (MPa)	Modulus (GPa)
PEG-WS-SFFs-0.5x	40.5±7.7	5.4±1.3
PEG-WS-SFFs-1x	57.5±10.2	6.1±1.1
ET-WS-SFFs-0.5x	32.9±3.6	4.6±0.7
ET-WS-SFFs-1x	40.6±6.0	5.1±0.5

	Strength (MPa)	Modulus (GPa)
PEG-MT-SFMs	60±4	2.9±0.4
ET-MT-SFMs	59±7	2.6±0.7
PEG-SFMs	37±3	1.4±0.4
ET-SFMs	35±4	1.3±0.3
As-cast SFMs	20±3	1.0±0.2

Table S4. The mechanical properties of MT-SFMs and their control samples in dry state.

Table S5. The mechanical properties of MT-SFMs and their control samples in wet state.

	Strength (MPa)	Modulus (MPa)
PEG-MT-SFMs	5.4±0.5	23.8±1.5
ET-MT-SFMs	4.7±0.9	21.3±2.1
PEG-SFMs	2.2±0.1	5.9±0.6
ET-SFMs	1.9±0.4	4.9±2.2
As-cast SFMs	0.6±0.2	1.7±0.7