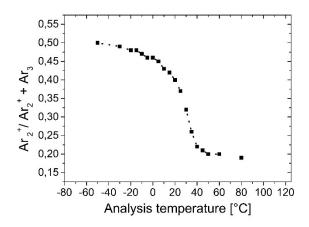

Supporting information


Investigating the relationship between the mechanical properties of plasma polymer-like thin films and their glass transition temperature

Nathan Vinx, ¹ Pascal Damman, ² Philippe Leclère, ³ Bruno Bresson, ⁴ Christian Fretigny, ⁴ Claude Poleunis, ⁵ Arnaud Delcorte, ⁵ Damien Cossement, ⁶ Rony Snyders ^{1,6}, and Damien Thiry ^{1*}

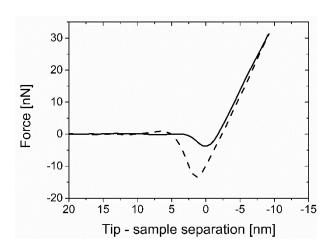

- ¹ Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
- ² Interface et Fluides Complexes (Influx), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
- ³ Laboratory for Chemistry of Novel Materials (CMN), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
- ⁴ Sciences et Ingénierie de la Matière Molle (SIMM), ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 05, France
- ⁵ Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCL), Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
- ⁶ Materia Nova Research Center, Parc Initialis, B-7000 Mons, Belgium

Figure S1: 2D AFM images of (a) $PPF_{10^{\circ}C}$ (b) $PPF_{23^{\circ}C}$ (c) $PPF_{45^{\circ}C}$.

Figure S2: $Ar_2^+/(Ar_2^+ + Ar_3^+)$ ratio of backscattered ions collected during ToF-SIMS experiments versus the analysis temperature for $PPF_{10^{\circ}C}$ annealed during 1h at 150°C in air. The analysis of the data reveals a surface transition temperature (T_T) of 32°C.

Figure S3: Typical force-distance curve recorded by AFM Peak Force measurements on $PPF_{10^{\circ}C}$ annealed for 1h at 150°C in air.