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SIA. Supplementary results: Multiple equilib-
ria in microvascular networks
The problem formed by Eqs. 6-17 is non-linear and may therefore
have several equilibrium solutions. Karst et al. showed, using
continuation methods, that for blood flow in 2D Voronoi-like net-
works, the number of equilibria was an increasing function of the
inlet tube hematocrit, although they noted that such equilibria
were lying close to each other1. However, they used a customized
phase separation relationship along with the expression for the ef-
fective viscosity of the blood deduced from in vivo experiments.
In particular, the latter induces a much stronger feedback of the
RBC on the flow compared to the in vitro expression used in this
work, and this feedback is a key in the emergence of multiple
equilibria.

Given the low inlet tube hematocrit considered (H i
t = 0.035)

and the weak feedback of the RBC on the flow (see Fig. 3b),
we suspect that the discrepancies between experiments and sim-
ulations highlighted in Fig. 3a cannot come from our numerical
method converging towards to a wrong solution. Still, we tried,
using the numerical method presented in Section SID (Eqs. SI.4
to SI.8) to trigger different equilibrium solutions in the hexagonal
network. To do so, we introduced a relaxation factor 0 < γ ≤ 1 so
that

Hn+1
d,i j = γHs

d,i j +(1− γ)Hn
d,i j, (SI.1)

where Hs
d represents the solution of the system formed by equa-

tions SI.4 and SI.8. This relaxation factor is a free parameter and
allows us to control the convergence of the numerical method. We
then solved the blood flow problem for an increasing inlet tube
hematocrit (from Ht,inlet = 0 to Ht,inlet = 0.9). For each value of the
inlet tube hematocrit and for an increasing relaxation parameter
value (from γ = 0.01 to γ = 1), we solved the blood flow problem
starting from the same 20 initial tube hematocrit distributions.
We constructed each one of these initial tube hematocrit distri-
butions by sampling the hematocrit of each segment (excluding
inlets) from a uniform distribution so that Ht,initial ∼U (0,1). Such
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a screening procedure can be seen as a very crude numerical con-
tinuation method2.

To make sure that this screening procedure was capable of cap-
turing different equilibria, we applied it first in ladder-like net-
works (Figure SI1), similar in topology to the hexagonal network
depicted in Figure 2, but with an increased number of inlets and
outlets. These networks were prescribed with uniform tube hema-
tocrit at the inlets (red segments in Fig. SI1a) and uniform pres-
sure drops between inlets and outlets (blue lines in Figure SI1a).
Given their geometries and the boundary conditions prescribed,
such networks always exhibit at least one trivial equilibrium re-
gardless of the inlet tube hematocrit, which is no flow in hor-
izontal segments and uniform flow and tube hematocrit in the
vertical segments. Figure SI1b, which displays the tube hema-
tocrit in the horizontal segment highlighted by a black arrow
in Fig. SI1a, shows that in ladder networks, beyond a certain
inlet tube hematocrit, this trivial equilibrium becomes unstable
and more equilibria start to emerge. We note that this thresh-
old is a decreasing function of the network size so that the trivial
equilibrium, in large network, starts to destabilize for lower ini-
tial tube hematocrits. For ladder networks with the same size as
the hexagonal network, we found that this threshold lies around
Ht,inlet ≈ 0.8± 0.05, which is considerably larger than the range
of inlet tube hematocrit explored experimentally in this work. Fi-
nally, we note that similar destabilizations were already obtained
using a Wheatstone bridge-like network, with even the emer-
gence of oscillations3. This shows that our screening procedure
was able to capture, to some extent, different equilibria.

We repeated this procedure on the hexagonal network and the
method did not converge towards more than one equilibrium, re-
gardless of the inlet tube hematocrit considered. This does not
definitely rule out the existence of several equilibria associated
with the hexagonal network at low inlet tube hematocrit, how-
ever it strongly suggests that if they exist, such solutions are likely
to be very close to each other and therefore cannot explain the dif-
ference observed between experiments and simulations in Fig. 3a.

SIB. Supplementary results: Tissue Fåhraeus
effect
The tissue Fåhraeus effect (T FE) denotes a reduction of the vol-
ume fraction of RBCs in the whole network by comparison to its
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Figure SI1 Multiple equilibria in a ladder network (W = 10µm). (a) Ladder network with inlets highlighted in red and outlets in blue. (b) Tube
hematocrit in the purple horizontal segment highlighted by the black arrow in (a) as a function of inlet hematocrit.

discharge hematocrit (defined as the ratio between the RBC flow
and the total flow)4,5:

T FE =
VRBC

V

1
H i

d
=

VRBC

V

Qi
RBC
Qi ,

where VRBC is the total volume of RBCs within the network
(VRBC = ∑k Ht,kπLkr2

k ), V is the total volume of the network
(V =∑k πLkr2

k ) and H i
d , Qi

RBC and Qi are the discharge hematocrit,
the flow rate of RBCs and the total flow rate at the network in-
let, respectively. It is analogous to the Fåhraeus effect, {i.e.}, the
reduction of the hematocrit within a single segment (tube hemat-
ocrit) by comparison to the discharge hematocrit (FEk = Ht,k/Hd,k).
The latter results from the correlation between hematocrit and
velocity within a single vessel cross-section4,6, which can be ev-
idenced by rewriting the Fåhraeus effect as the ratio between
the RBC average transit time and the total average transit time
throughout this vessel. Similarly, the tissue Fåhraeus effect can
be expressed as the ratio between the RBC average travel time
and the total average travel time throughout the network, and
thus results from the correlation between high velocity and high
hematocrit vessels.

Fig. SI2 displays the tube hematocrit as a function of RBC veloc-
ity in each channel of the hexagonal network, as predicted by the
equivalent fluid network model, without correcting phase sepa-
ration at order-1 bifurcations (red circles) and after correcting
phase separation at order-1 bifurcations, as described in Sections
2.4 and 2.5. Except for the channels with the highest velocities
(i.e. inlet channel and daughter channels of the order-0 bifurca-
tion), where it does not change the tube hematocrit, this correc-
tion increases the tube hematocrit in all channels with a normal-
ized velocity larger than ∼ 0.2 and decreases the tube hematocrit
in all channels with a normalized velocity larger than ∼ 0.05, thus
increasing the correlation between high velocity and high hema-
tocrit channels. This results in a ∼ 10% reduction of the value of
T FE, corresponding to an increase of the tissue Fåhraeus effect.

SIC. Supplementary Results: RBC distribution
in the hexagonal network with narrow chan-
nels
Experiments in such networks are extremely difficult to perform
because RBCs quickly clog some channels despite the treatment
of our microfluidic devices with BSA to reduce RBC adhesion at
walls. This prevented from getting stable flow fields and RBC
distributions over sufficient periods of time to extract quantita-
tive measures of both the flow rate and hematocrit throughout
the network. However, because the strong confinement induces
a fast relaxation of RBCs toward the channel center at each bi-
furcation, the RBC distribution can be deduced using the equiv-
alent fluid model described in Section 6.2. Figure SI3 shows the
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Figure SI2 Tube hematocrit as a function of red blood cell velocity in
each segment of the hexagonal network, as predicted by the equivalent
fluid network model, with (red dots) and without (red circles) correcting
phase separation at order-1 bifurcations as described in Sections 2.4 and
2.5 (W = 10µm and H i

t =). For each scenario, the value of the tissue
Fåhraeus effect is given in the legend.
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corresponding simulated RBC distribution. Once again, the cen-
tral region of the network is favored even if the heterogeneity at
large scale is reduced compared to the simulation for large chan-
nels (see Fig. 7b for comparison). This same phenomenon arises
when increasing the inlet tube hematocrit in the network with
larger channels (simulations not shown).

Figure SI3 Distribution of simulated tube hematocrit in a hexagonal
network made of 5µm-wide channels with H i

t = 0.035.

SID. Supplementary results: Structure of the
baseline flow field in hexagonal and square
networks
For flow in networks with channels of equal sizes, the structure of
the baseline flow field can generally be inferred from the length of
the flow pathways that connect the network inlet and outlet. For
imposed inlet and outlet pressures, it is obvious that the pressure
drop per unit length along a given pathway is inversely propor-
tional to the length of this pathway, so that higher flow rates are
expected on shorter pathways.

In the hexagonal network, the length of flow pathways that
connect the network inlet and outlet is much shorter for path-
ways visiting the network center (see e.g. blue line in Fig. SI4,
left panel), while they are longer for pathways visiting the net-
work periphery (see e.g. orange trajectory in Fig. SI4, left panel).
Thus, the pressure drop by unit length is smaller in the periph-
eral pathways compared to the central one, resulting in a smaller
flow rate in branch β compared to branch α. Consistently, solving
for the baseline flow field in this network yields Qβ

Qα = 0.5803 so

that lcenter
lperiphery

= 11/19 = 0.5789 provides a good approximation for
this flow ratio. A similar result would of course be obtained in a
square network with a single inlet and outlet located in the center
of opposite sides.

In the square network, however, the length of the peripheral
pathways is equal to the length of the central ones (see e.g. or-
ange vs. blue trajectory in Fig. SI4, right panel). As a result, the
above rough approximation yields Qβ

Qα = 1/2, making it impossi-
ble to predict the branch with the highest flow. To go further, let

consider the formal analogy between :
- the baseline pressure field in the square network, i.e. the solu-

tion of Eqs. 6 and 8 with uniform effective viscosity and imposed
pressures (Pi = 1 and Po = 0) at the inlet and outlet , respectively

- and the solution of the Laplace equation discretized with a
finite-difference scheme over a square region with the follow-
ing boundary conditions: imposed pressures at the lower-left and
upper-right corner, and Neumann boundary-conditions (~∇P.~n= 0)
everywhere else on the boundary.

Because isopressures and streamlines of the later are orthog-
onal to each other, we can deduce that isopressures are locally
orthogonal to the domain boundaries, which are evident stream-
lines. Thus, the concavity of isopressures (P ≥ 0.5) must be ori-
ented toward the lower left corner, as schematized by the red
dotted line in the right panel of Fig. SI4, and the concavity of
isopressures (P ≤ 0.5) must be oriented toward the upper right
corner*. This yields a higher pressure drop, resulting in a larger
flow rate, in branch β than in branch α.

SIE. Supplementary methods: Experiments
We compute the optical density profile OD(x) from the time-
averaged grey-scale intensity profile I(x) as follows7–11:

OD(x) =−log10

(
I(x)
I0(x)

)
, (SI.2)

where I0(x) is a reference intensity profile. Following Sherwood
et al.9, we assume that I0(x) is constant and equal to the grey-
scale value in the PDMS far from any channel, as illustrated in Fig.
SI3a. This is a reasonable approximation except in the close vicin-
ity of the channel walls (see line transverse to the channel axis,
where the channel is devoid of RBCs, highlighted in Fig. SI3a).
Channel walls result in strong fluctuations of the intensity, with
two bright stripes located outside the channel walls, resulting in
peaks of high intensity as shown in Fig. SI3b. We assume these
peaks are at equal distance to the channel center, and then de-
termine the channel wall locations by translation (±W/2). More-
over, we discard the optical signatures of these channels walls,
which appear in the time-averaged grey-scale intensity image
(Fig. SI3c) and in the optical density profile, as shown by dot-
ted lines in Fig. SI3d. More precisely, starting from the channel
center, we only keep the positive optical density values, as in the
left hand side of the channel, or the values encountered before
the first local minimum, as in the right hand side of the channels.
The hematocrit profile is then estimated as follows (Fig. SI3e):
in the central region, it is deduced by calibration from the Opti-
cal Density value (see below); on the side where negative values
of the Optical Density have been discarded, it is assumed to be
null, on the side where a local minimum has been reached, it is
inferred from the optical density profile by linear extrapolation.

We calibrated the relationship between the local optical den-
sity and the local depth-averaged hematocrit by using Leja slides
(Leja Products B.V.). These are manufactured Hele-Shaw cells

* resulting in the isopressure line (P = 0.5) being the upper-left to lower-right diago-
nal.
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Figure SI4 Examples of central (blue) and peripheral (orange) trajectories in the hexagonal (left) and square (right) configuration. Consistent with
the notations used in the manuscript, α denotes the daughter branch of order-1 bifurcations located on the same side than the previous, order-0,
bifurcation apex. The red dotted line schematizes the isopressure line corresponding to α downstream vertex.
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Figure SI5 Experimental determination of hematocrit profiles in channels with square cross-sections of 10×10µm2. a: Instantaneous snapshot showing
a typical area used for estimating the average background intensity I0 and a line transverse to the channel axis, where the channel is devoid of RBCs.
Labels 1, 3 and 5 highlight the bright stripes induced by channel walls and labels 2 and 4 highlight the dark stripes; b: Instantaneous intensity profile
(Arbitrary Units) associated to the transverse line highlighted in Panel a. The two outermost peaks (grey continuous lines) correspond to stripes 1
and 5 in Panel a, and are assumed to be at equal distance to the channel center (dashed line). Locations of the channel walls (black continuous lines)
are deduced from the channel center by translation (±W/2); c: Intensity I averaged over 3 seconds, keeping one of ten snapshots to avoid considering
the same RBC multiple times at the same location. d. Optical Density (blue) profile on the same line as in Panel b, estimated as Log(I/I0). Dashed
lines highlight the locations where the Optical Density is perturbed by the vessel walls, while the continuous line highlights the locations where we
consider it is proportional to the hematocrit, according to the calibration displayed in Fig. SI4; e. Hematocrit, directly obtained from the measured
Optical Density and the calibration curve shown in Fig. SI6 (continuous line) or inferred by linear interpolation and replacement of negative values by
zero (dashed line).
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with finely controlled depths (10 or 20µm) and much larger length
and width (∼ 2cm). We filled each slide extremely slowly with a
small volume of RBC suspension of known feed hematocrit, so
as to reduce as much as possible local hematocrit heterogeneities
within the slide, while ensuring it contained the whole injected
volume. In that way, the local hematocrit is everywhere equal
to the feed hematocrit, which enables precise calibration of the
optical density, even for suspensions where RBCs are not individ-
ually discernible. As expected from Beer-Lambert law, the slope
of the linear regressions obtained for moderate hematocrit val-
ues in 20µm Leja slides is twice the slope obtained in 10µm Leja
slides. Also, the results obtained in the present work match those
obtained previously in 20µm-side channels with the same imag-
ing system, in the limit of small hematocrits, which validates the
calibration method.

Finally, we derive the tube hematocrit Ht associated to each mi-
crochannel by averaging H(x) over the channel width W at a lon-
gitudinal position in the channel where the RBC velocity profile
is neither influenced by the previous nor by the next bifurcation
(z = 45µm):

Ht =

[
1

W

∫ W/2

−W/2
H(x)dx

]
z=45µm

. (SI.3)

Figure SI6 Calibration of optical density from local depth-averaged
hematocrit. Filled symbols: mean and standard deviation for 3 exper-
iments in Leja Slides. Red circles: 10µm depth; Blue squares: 20µm
depth. Empty triangles: data obtained by Roman et al.10 in 20µm side
channels for small hematocrits, which can be measured by individually
counting the RBCs. Lines: linear regressions for H from 0 to 0.3 (10µm
depth) or 0 to 0.15 (20µm depth).

SIF. Supplementary methods: Numerical solv-
ing of the blood flow problem

The blood flow model is defined by Eqs. 6-17 and represents a
coupled non-linear problem that we solve iteratively. Each iter-
ation is divided into two steps. First, we solve the linear system
formed by Eqs. 6 and 8-11, which yields the pressure and total
flow rate, using the discharge hematocrit obtained at the previ-

ous iteration, so that

∑
j

Qn+1
i j = 0, (SI.4)

Qn+1
i j =

πd4
h,i j

128µeff,i j(Hn
d,i j)Li j

(
Pn+1

i −Pn+1
j

)
, (SI.5)

where n + 1 represents the current iteration, n the previous it-
eration and where µeff,i j(Hn

d,i j) highlights the dependency of the
effective viscosity upon the unknowns of the problem. We then
use the flow rate solution of the above two equations, to solve
Eqs. 7, 12 and 13, which yields the discharge hematocrit so that

∑
j

Hn+1
d,i j Qn+1

i j = 0, (SI.6)

at all bifurcations and

Hn+1
d,α =

FQα
E (H

n
d,e,FQα,n+1

B )

FQα,n+1
B

Hn+1
d,e , (SI.7)

Hn+1
d,β =

1−FQα
E (H

n
d,e,FQα,n+1

B )

1−FQα,n+1
B

Hn+1
d,e , (SI.8)

at each diverging bifurcations. We recall that FQα,n+1
B =

∣∣∣Qn+1
α

Qn+1
e

∣∣∣
and that FQα

E (H
n
d,e,FQα,n+1

B ) is described by Eq. 14. We note that
FQα

E uses the discharge hematocrit values at the previous iter-
ation (Hn

d,e), so that Eqs. SI.6 to SI.8 also form a linear system
straightforward to solve. This two-step method is justified since
RBCs have a relatively weak feedback on the flow (i.e. ∂ µeff,i j

∂Hd,i j

is small), especially in the regime of small discharge hematocrit,
which is the focus of this work, so that equation SI.5 can be lin-
earized and truncated around Hn

d,i j.
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