Electronic Supplementary Material (ESI) for Soft Matter.

Supplementary Information for Size-Sieving Separation of Hard-Sphere Gases at Low Concentrations through Cylindrically Porous Membranes

Yue Yu^{1} and Kai Zhang ${ }^{1,2, *}$
${ }^{1}$ Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China
${ }^{2}$ Data Science Research Center (DSRC), Duke Kunshan University, Kunshan, Jiangsu, 215300, China

This material elaborates the analytical theory of the collision dynamics between hard spheres and cylindrically porous membranes, as well as the computer algorithms to implement it in event-driven molecular dynamics simulations.

1. THEORY

There are three possibilities on how a particle collides with a cylindrical pore with a circular opening: it can hit a non-porous area (case 1), or hit and bounce off the edge of the pore (case 2), or directly collide with the inner wall of the pore (case 3) as shown in Fig. S1.

FIG. S1: Three cases of particle-pore collision.
Below we first calculate the time it takes for a particle outside the pore to reach the membrane in one of the three cases. Then we provide the dynamical details about the velocity vectors during the collision between the particle and the pore.

1.1. Collision time

In case 1 , the time till colliding with the membrane t_{M} is simply the particle's z-direction distance to the membrane it flies toward divided by its z velocity, i.e.

$$
\begin{equation*}
t_{M}=\left|\frac{z-z_{M}}{v_{z}}\right| \tag{1}
\end{equation*}
$$

where z_{M} is the z-position of the membrane in question. For the next two cases, the particle would be flying towards a certain pore. We will denote its position as that of its geometric center, $\overrightarrow{\mathbf{r}}_{M}=\left(x_{M}, y_{M}, z_{M}\right)$. Its diameter we denote as d. The particle originally at position $\overrightarrow{\mathbf{r}}$ collides with the membrane when its position becomes $\overrightarrow{\mathbf{r}}^{\prime}$.

[^0]In case 2 , by the time the collision occurs, in other words, when $\overrightarrow{\mathbf{r}}$ becomes $\overrightarrow{\mathbf{r}}^{\prime}=\overrightarrow{\mathbf{r}}+t_{M} \overrightarrow{\mathbf{v}}$, as shown in Fig. S2. It shows specifically the case where the particle is flying towards the pore from a non-membrane space. However, in terms of physics, all arguments are valid in the case that the particle is inside the membrane:

FIG. S2: Case 2 collision process
The way to determine t_{M} lies in the right triangle with dashed edges, formed from the particle's geometric/mass center, its vertical projection onto the plane of the pore, and the particle-pore contact point. In the pore's plane, parallel to the $x y$-plane, the distance from the particle center to the pore center would be:

$$
\begin{equation*}
\delta^{\prime}=\sqrt{\left(x+v_{x} t_{M}-x_{M}\right)^{2}+\left(y+v_{y} t_{M}-y_{M}\right)^{2}} \tag{2}
\end{equation*}
$$

And the difference between it and the pore radius is:

$$
\begin{equation*}
\delta=\frac{d}{2}-\delta^{\prime} \tag{3}
\end{equation*}
$$

Finally, by the Pythagorean theorem:

$$
\begin{equation*}
\left(\frac{\sigma}{2}\right)^{2}=\left(z+v_{z} t_{M}-z_{M}\right)^{2}+\delta^{2} \tag{4}
\end{equation*}
$$

Now we have an equation with t_{M} as the only unknown. To solve it, we must first expand it into a polynomial form. For simplicity, let us define:

$$
\begin{gather*}
v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2} \\
r_{v}=\left(x-x_{M}\right) v_{x}+\left(y-y_{M}\right) v_{y}+\left(z-z_{M}\right) v_{z} \\
\Delta r=\sqrt{\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}+\left(z-z_{M}\right)^{2}} \tag{5}
\end{gather*}
$$

Then through algebraic manipulation, we convert Eq.(4) into the following 4th-order polynomial with normalized highest-order coefficient

$$
\begin{equation*}
t_{M}^{4}+a t_{M}^{3}+b t_{M}^{2}+c t_{M}+d=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{gather*}
a=\frac{4 r_{v}}{v^{2}} \\
b=\frac{4 r_{v}^{2}-d^{2}\left(v_{x}^{2}+v_{y}^{2}\right)}{v^{4}}+\frac{2(\Delta r)^{2}+\frac{d^{2}-\sigma^{2}}{2}}{v^{2}} \\
c=\frac{2 d^{2}\left(z-z_{M}\right) v_{z}+r_{v}\left[4(\Delta r)^{2}-d^{2}-\sigma^{2}\right]}{v^{4}} \\
d=\frac{\left[(\Delta r)^{2}+\frac{d^{2}-\sigma^{2}}{4}\right]-d^{2}\left[\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}\right]}{v^{4}} \tag{7}
\end{gather*}
$$

To solve this equation, the first step is to define

$$
\begin{equation*}
s=t_{M}+\frac{a}{4} \tag{8}
\end{equation*}
$$

Substituting t_{M} for s in Eq.(6), we get

$$
\begin{equation*}
s^{4}+p s^{2}+q s+w=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{gather*}
p=b-\frac{3}{8} a^{2} \\
q=\frac{a^{3}}{8}-\frac{a b}{2}+c \\
w=-\frac{3}{256} a^{4}+\frac{a^{2} b}{16}-\frac{a c}{4}+d \tag{10}
\end{gather*}
$$

Eq.(9) has a systemic solution set. To solve for it, we must first obtain the solution for this cubic equation of u

$$
\begin{equation*}
u^{3}-\frac{p}{2} u^{2}-w u+\frac{4 w p-q^{2}}{8}=0 \tag{11}
\end{equation*}
$$

Such an equation has at least one solutioion and at most three, $u_{i}(i=0,1,2)$. Now, the determinant Δ for any cubic equation or the form $x^{3}+A x^{2}+B x+C=0$ is

$$
\begin{gather*}
\Delta=\left(\frac{P}{3}\right)^{3}+\left(\frac{Q}{2}\right)^{2} \\
P=B-\frac{A^{2}}{3} \\
Q=\frac{2}{27} A-\frac{A B}{3}+C \tag{12}
\end{gather*}
$$

Once we plug in $A=-\frac{p}{2}, B=-w, C=\frac{4 w p-q^{2}}{8}$, there are three different scenarios

$$
\left\{\begin{array}{l}
\Delta>0: u_{0}=u_{1}=u_{2}=\sqrt[3]{\sqrt{\Delta}-\frac{Q}{2}}-\sqrt[3]{\sqrt{\Delta}+\frac{Q}{2}}-\frac{A}{3} \tag{13}\\
\Delta=0\left\{\begin{array}{l}
u_{0}=-2 \sqrt[3]{\frac{Q}{2}}-\frac{A}{3} \\
u_{1}=u_{2}=\sqrt[3]{\frac{Q}{2}}-\frac{A}{3}
\end{array}\right. \\
\Delta<0\left\{\begin{array}{l}
u_{0}=2 \sqrt{-\frac{P}{3}} \cos \theta-\frac{A}{3} \\
u_{1}=2 \sqrt{-\frac{P}{3}} \cos \left(\theta+\frac{2 \pi}{3}\right)-\frac{A}{3} \quad \theta=\frac{1}{3} \arccos \left(\frac{-Q / 2}{\sqrt{-(P / 3)^{3}}}\right) \\
u_{2}=2 \sqrt{-\frac{P}{3}} \cos \left(\theta-\frac{2 \pi}{3}\right)-\frac{A}{3}
\end{array}\right.
\end{array}\right.
$$

For any u_{i}, if $q \geq 0$, then to get real solutions of s, and thus of t_{M}, we need to solve

$$
\begin{align*}
& s^{2}+s \sqrt{2 u-p}+u-\sqrt{u^{2}-w}=0 \\
& s^{2}-s \sqrt{2 u-p}+u+\sqrt{u^{2}-w}=0 \tag{14}
\end{align*}
$$

On the other hand, if $q<0$, the equations become:

$$
\begin{align*}
& s^{2}+s \sqrt{2 u-p}+u+\sqrt{u^{2}-w}=0 \\
& s^{2}-s \sqrt{2 u-p}+u-\sqrt{u^{2}-w}=0 \tag{15}
\end{align*}
$$

For any solution of t_{M} solved, the least positive value is the answer we search for.
Finally, in case 3, which only happens when $\sigma<d$, we again taking the case where the particle starts in a nonmembrane space. For this type of collision, the z-direction: does not matter, therefore we need only care about the motion parallel to the $x y$-plane:

FIG. S3: Case 3 collision process in the $x y$-plane
In the Fig. S3, only the x and y coordinates and components are considered. t_{M} could be calculated as

$$
\begin{equation*}
t_{M}=\frac{\|\vec{\Delta} \boldsymbol{r}\|}{\|\overrightarrow{\mathbf{v}}\|}=\frac{\|\overrightarrow{\Delta r}\|}{\sqrt{v_{x}^{2}+v_{y}^{2}}} \tag{16}
\end{equation*}
$$

To calculate $\|\overrightarrow{\Delta r}\|$, we rely on a trigonometric relation. The angle θ_{1} could be calculated using the inner product between $\overrightarrow{\mathbf{v}}$ and the difference vector between $\overrightarrow{\mathbf{r}}_{M}$ and $\overrightarrow{\mathbf{r}}$

$$
\begin{equation*}
\cos \theta_{1}=\frac{\overrightarrow{\mathbf{v}} \cdot\left(\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right)}{\|\overrightarrow{\mathbf{v}}\| \cdot\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\|} \tag{17}
\end{equation*}
$$

And by the law of sines, we get that

$$
\begin{equation*}
\sin \theta_{2}=\frac{\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\|}{(d-\sigma) / 2} \sin \theta_{1}=\frac{\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\|}{(d-\sigma) / 2} \sqrt{1-\cos ^{2} \theta_{1}} \tag{18}
\end{equation*}
$$

Now, θ_{2} solved this way would have two possble solutions, but we only take $\theta_{2} \leq 90^{\circ}$, which makes physical sense. In this case, $\cos \theta_{2} \geq 0$. We finalize our calculation with using the law of cosines to solve for $\|\overrightarrow{\Delta r}\|$ using this relation:

$$
\begin{align*}
\|\overrightarrow{\Delta r}\|^{2} & =\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\|^{2}+\left(\frac{d-\sigma}{2}\right)^{2}-2\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\| \cdot \frac{d-\sigma}{2} \cdot \cos \left(\pi-\theta_{1}-\theta_{2}\right) \\
& =\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\|^{2}+\left(\frac{d-\sigma}{2}\right)^{2}+\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\| \cdot(d-\sigma) \cdot \cos \left(\theta_{1}+\theta_{2}\right) \\
& =\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\|^{2}+\left(\frac{d-\sigma}{2}\right)^{2} \tag{19}\\
& +\left\|\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}\right\| \cdot(d-\sigma) \cdot\left(\cos \theta_{1} \sqrt{1-\sin ^{2} \theta_{2}}-\sqrt{1-\cos ^{2} \theta_{1}} \sin \theta_{2}\right)
\end{align*}
$$

Solving $\|\overrightarrow{\Delta \mathbf{r}}\|$ this way and replugging it into (16) will get us the value of t_{M}.

1.2. Collision dynamics

In case 1 , the only change to that particle's velocity is that v_{z} reverses sign

$$
\begin{equation*}
v_{z} \leftarrow-v_{z} \tag{20}
\end{equation*}
$$

In case 2, the dynamics is equivalent to a sphere elastically colliding with a tangential plane passing through the particle-pore contact point. Therefore, what would happen is that the component of the initial velocity vector parallel to this plane's normal line, $\overrightarrow{\mathbf{v}}_{\|}$, would change sign. Meanwhile, the corresponding normal vector $\overrightarrow{\mathbf{n}}=\left(n_{x}, n_{y}, n_{z}\right)$ to the plane is along the line segment that connects the particle's contact point to the pore edge and its center. The physical process could be understood using the figure below, where the red and blue vectors denotes the velocity before and after collision respectively, along with their components with respect to $\overrightarrow{\mathbf{n}}$

FIG. S4: Dynamics of case 2
By the above reasoning, $\overrightarrow{\mathbf{n}}$ can be chosen to be the vector starting from the particle-pore contact point to the particle center. If we refer back to Fig. S2 and equations (2) and (3), taking account that here $t_{M}=0$

$$
\begin{gather*}
\sqrt{n_{x}^{2}+n_{y}^{2}}=\delta^{\prime}=\frac{d}{2}-\sqrt{\left(x_{M}-x\right)^{2}+\left(y_{M}-y\right)^{2}} \\
n_{z}=z-z_{M} \tag{21}
\end{gather*}
$$

In the $x y$-plane, $\left(n_{x}, n_{y}\right)$ should follow the direction from the particle center to the pore center, therefore

$$
\begin{align*}
& n_{x}=\delta^{\prime} \cdot \frac{x_{M}-x}{\sqrt{\left(x_{M}-x\right)^{2}+\left(y_{M}-y\right)^{2}}}=\left[\frac{d / 2}{\sqrt{\left(x_{M}-x\right)^{2}+\left(y_{M}-y\right)^{2}}}-1\right]\left(x_{M}-x\right) \\
& n_{y}=\delta^{\prime} \cdot \frac{y_{M}-y}{\sqrt{\left(x_{M}-x\right)^{2}+\left(y_{M}-y\right)^{2}}}=\left[\frac{d / 2}{\sqrt{\left(x_{M}-x\right)^{2}+\left(y_{M}-y\right)^{2}}}-1\right]\left(y_{M}-y\right) \tag{22}
\end{align*}
$$

So

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}_{\|}=\frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{n}}}{\|\overrightarrow{\mathbf{n}}\|^{2}} \overrightarrow{\mathbf{n}}=\frac{v_{x} n_{x}+v_{y} n_{y}+v_{z} n_{z}}{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}}\left(n_{x}, n_{y}, n_{z}\right) \tag{23}
\end{equation*}
$$

Meanwhile

$$
\begin{align*}
& \overrightarrow{\mathbf{v}}_{\|}^{\prime}=-\overrightarrow{\mathbf{v}}_{\|} \\
& \overrightarrow{\mathbf{v}}_{\perp}^{\prime}=\overrightarrow{\mathbf{v}}_{\perp} \tag{24}
\end{align*}
$$

By combining (23) and (24), we get

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}^{\prime}=\overrightarrow{\mathbf{v}}_{\perp}^{\prime}+\overrightarrow{\mathbf{v}}_{\|}^{\prime}=\overrightarrow{\mathbf{v}}_{\perp}-\overrightarrow{\mathbf{v}}_{\|}=\left(\overrightarrow{\mathbf{v}}_{\perp}+\overrightarrow{\mathbf{v}}_{\|}\right)-2 \overrightarrow{\mathbf{v}}_{\|}=\overrightarrow{\mathbf{v}}-2 \overrightarrow{\mathbf{v}}_{\|}=\overrightarrow{\mathbf{v}}-2(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}} \tag{25}
\end{equation*}
$$

Or in terms of vector components

$$
\left\{\begin{array}{l}
v_{x}^{\prime}=v_{x}-2 \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{n}}}{\|\overrightarrow{\vec{n}}\|^{2}} n_{x} \tag{26}\\
v_{y}^{\prime}=v_{y}-2 \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{n}}}{\|\overrightarrow{\vec{n}}\|^{2}} n_{y} \\
v_{z}^{\prime}=v_{z}-2 \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\vec{n}}}{\|\overrightarrow{\mathbf{n}}\|^{2}} n_{z}
\end{array}\right.
$$

In case 3, which is specific to when a particle has a diameter smaller than the pore it enters, the collision can also considered to be equivalent to that between a sphere and a tangential plane passing the particle-pore contact point. The main difference between this case and the previous is that v_{z} remains unchanged. Any change in velocity happens in the $x y$-plane. Hence, we have the following figure to depict this process with only the $x y$ dimension:

FIG. S5: Dynamics of case 3 in $x y$-plane
Per the same logic in case 2, what we have is that $\vec{v}_{\|}$reverses direction, only now it is limited to considering inside the $x y$ plane. Here, $\overrightarrow{\mathbf{n}}$ is parallel to $\overrightarrow{\mathbf{r}}_{M}-\overrightarrow{\mathbf{r}}$, so we can choose to make them equal, in other words

$$
\begin{equation*}
\overrightarrow{\mathbf{n}}=\left(n_{x}, n_{y}\right)=\frac{\sigma}{\sqrt{\left(x_{M}-x\right)^{2}+\left(y_{M}-y\right)^{2}}}\left(x_{M}-x, y_{M}-y\right)=\frac{\sigma}{d-\sigma}\left(x_{M}-x, y_{M}-y\right) \tag{27}
\end{equation*}
$$

In this way

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}_{\|}=\frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{n}}}{\|\overrightarrow{\mathbf{n}}\|^{2}} \overrightarrow{\mathbf{n}}=\frac{v_{x} n_{x}+v_{y} n_{y}}{\|\overrightarrow{\mathbf{n}}\|^{2}} \overrightarrow{\mathbf{n}} \tag{28}
\end{equation*}
$$

The rest follows similar logic to the case 2 dynamics, and we would get:

$$
\left\{\begin{array}{l}
v_{x}^{\prime}=v_{x}-2 \frac{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{n}}}{\|\overrightarrow{\mathbf{n}}\|^{2}} n_{x} \tag{29}\\
v_{y}^{\prime}=v_{y}-2 \frac{\overrightarrow{\mathbf{v}} \cdot \|_{\mathbf{n}}}{\|\overrightarrow{\mathbf{n}}\|^{2}} n_{y}
\end{array}\right.
$$

2. ALGORITHM

This session provides sample algorithms to implement above theoretical results for particle-pore collision dynamics.

2.1. Collision time

Before getting to the algorithm for computing t_{M}, we should first write down the solution for the case 2 equation for t_{M} in code. To start, the solutions to (11) should be

Algorithm 1 Cubic equation solutions

Require: A, B, C
$P \leftarrow B-\frac{A^{2}}{3}, Q \leftarrow \frac{2 A^{3}}{27}-\frac{A B}{3}+C$
if $\left(\frac{P}{3}\right)^{3}+\left(\frac{Q}{2}\right)^{2}>0$ then

$$
u_{1}=u_{2}=u_{3} \leftarrow \sqrt[3]{\sqrt{\left(\frac{P}{3}\right)^{3}+\left(\frac{Q}{2}\right)^{2}}-\frac{Q}{2}}-\sqrt[3]{\sqrt{\left(\frac{P}{3}\right)^{3}+\left(\frac{Q}{2}\right)^{2}}+\frac{Q}{2}}-\frac{A}{3}
$$

else if $\left(\frac{P}{3}\right)^{3}+\left(\frac{Q}{2}\right)^{2}==0$ then

$$
u_{1} \leftarrow 2 \sqrt[3]{-\frac{Q}{2}}-\frac{A}{3}
$$

else

$$
u_{2}=u_{3} \leftarrow-\sqrt[3]{-\frac{Q}{2}}-\frac{A}{3}
$$

$$
\theta \leftarrow \frac{1}{3} \arccos \left(\frac{-Q / 2}{\sqrt{-(P / 3)^{3}}}\right)
$$

$$
u_{1} \leftarrow 2 \sqrt{-\frac{P}{3}} \cos \theta-\frac{A}{3}
$$

$$
u_{2} \leftarrow 2 \sqrt{-\frac{P}{3}} \cos \left(\theta+\frac{2 \pi}{3}\right)-\frac{A}{3}
$$

$$
u_{3} \leftarrow 2 \sqrt{-\frac{P}{3}} \cos \left(\theta-\frac{2 \pi}{3}\right)-\frac{A}{3}
$$

end if

With Algorithm 1, we can define a function for solving t_{M} under case 2, inputing the positions and diameters of both particle and pore, plus the particle's velocity components.

Algorithm 2 Quartic equation solutions

Require: $d, x, v_{x}, x_{M}, y, v_{y}, y_{M}, z, v_{z}, z_{M}, \sigma$
$t_{M} \leftarrow+\infty$
$r_{v} \leftarrow\left(x-x_{M}\right) v_{x}+\left(y-y_{M}\right) v_{y}+\left(z-z_{M}\right) v_{z}$
$(\Delta r)^{2} \leftarrow\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}+\left(z-z_{M}\right)^{2}$
$v^{2} \leftarrow v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$
$a \leftarrow \frac{4 r_{v}}{v^{2}}$
$b \leftarrow \frac{4 r_{v}^{2}-d^{2}\left(v_{x}^{2}+v_{y}^{2}\right)}{v^{4}}+\frac{2(\Delta r)^{2}+\frac{d^{2}-\sigma^{2}}{2}}{v^{2}}$
$c \leftarrow \frac{2 d^{2}\left(z-z_{M}\right) v_{z}+r_{v}\left[4(\Delta r)^{2}-d^{2}-\sigma^{2}\right]}{v^{4}}$
$d \leftarrow \frac{\left[(\Delta r)^{2}+\frac{d^{2}-\sigma^{2}}{4}\right]-d^{v^{4}}\left[\left(x-x_{M}\right)^{2}+\left(y-y_{M}\right)^{2}\right]}{v^{4}}$
$p \leftarrow b-\frac{3}{8} a^{2}$
$q \leftarrow \frac{a^{3}}{8}-\frac{a b}{2}+c$
$w \leftarrow-\frac{3 a^{4}}{256}+\frac{a^{2} b}{16}-\frac{a c}{4}+d$
Cubic equation solutions $\left(A=-\frac{p}{2}, B=-w, C=\frac{w p}{2}-\frac{q^{2}}{8}\right)$
for $i=0 ; i<3 ; i++$ do
if $q \geq 0$ then
if $2 u_{i}-p \geq 0$ and $u_{i}^{2}-w \geq 0$ and $4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p \geq 0$ then
$t \leftarrow \frac{1}{2}\left(-\sqrt{2 u_{i}-p}+\sqrt{4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
$t \leftarrow \frac{1}{2}\left(-\sqrt{2 u_{i}-p}-\sqrt{4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
end if
if $2 u_{i}-p \geq 0$ and $u_{i}^{2}-w \geq 0$ and $-4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p \geq 0$ then
$t \leftarrow \frac{1}{2}\left(\sqrt{2 u_{i}-p}+\sqrt{-4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
$t \leftarrow \frac{1}{2}\left(\sqrt{2 u_{i}-p}-\sqrt{-4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$

end if

else
if $2 u_{i}-p \geq 0$ and $u_{i}^{2}-w \geq 0$ and $4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p \geq 0$ then
$t \leftarrow \frac{1}{2}\left(\sqrt{2 u_{i}-p}+\sqrt{4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
$t \leftarrow \frac{1}{2}\left(\sqrt{2 u_{i}-p}-\sqrt{4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
end if
if $2 u_{i}-p \geq 0$ and $u_{i}^{2}-w \geq 0$ and $-4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p \geq 0$ then
$t \leftarrow \frac{1}{2}\left(-\sqrt{2 u_{i}-p}+\sqrt{-4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
$t \leftarrow \frac{1}{2}\left(-\sqrt{2 u_{i}-p}-\sqrt{-4 \sqrt{u_{i}^{2}-w}-2 u_{i}-p}\right)-\frac{r_{v}}{v^{2}}$
$t_{M} \leftarrow t>10^{-10} ? \min \left(t_{M}, t\right): t_{M}$
end if
end if
end for
return t_{M}

In theory, we should test for $t>0$. But numerical computation comes with a finite precision, therefore a calculation that should yield 0 might give some value extremely close but nonzero. In our program, we chose $\epsilon=10^{-10}$ as our tolerance.

Before we try to compute t_{M}, we have to determine which of the three cases we are in. To do this, we must first determine if the particle is completely outside the membrane area, partly embedded in a pore, or completely inside one. After that is determined, we should assign to that particle the parameters of the pore it flies toward, $\left(x_{M i}, y_{M i}, z_{M i}, d_{i}\right)$, assuming such a pore exists. Shown below is the algorithm to do this, with the particle's label number i as input.

```
                    Algorithm 3 Assigning pore parameters
Require: \(i\)
    if \(\left(z_{i} \geq \frac{\sigma_{i}}{2}\right.\) and \(\left.z_{i} \leq Z_{1}-\frac{\sigma_{i}}{2}\right)\) or \(\left(z_{i} \geq Z_{2}+\frac{\sigma_{i}}{2}\right.\) and \(\left.z_{i} \leq L_{z}-\frac{\sigma_{i}}{2}\right)\) then
        \(x_{M i} \leftarrow 0\)
        \(y_{M i} \leftarrow 0\)
        \(d_{i} \leftarrow 0\)
        \(z_{M i} \leftarrow v_{i z}>0 ?\left(Z_{1}-\frac{\sigma_{i}}{2} \geq z_{i} ? Z_{1}: Z_{3}\right):\left(Z_{2}+\frac{\sigma_{i}}{2} \leq z_{i} ? Z_{2}: 0\right)\)
        \(t \leftarrow v_{i z}>0 ? \frac{z_{M i}-\sigma_{i} / 2-z_{i}}{v_{i z}}: \frac{z_{M i}+\sigma_{i} / 2-z_{i}}{v_{i z}}\)
        PosX \(\leftarrow x_{i}+v_{i x} t \quad \triangleright x\)-position of particle when it just reaches membrane
        \(\operatorname{PosY} \leftarrow y_{i}+v_{i y} t \quad \triangleright y\)-position of particle when it just reaches membrane
        for \(j=0 ; j<\) Number of pores; \(j++\) do
            if \(\left(\operatorname{PosX}-x_{j}\right)^{2}+\left(\operatorname{PosY}-y_{j}\right)^{2}<\left(\frac{d_{j}}{2}\right)^{2}\) then \(\quad \triangleright\) If \((\operatorname{PosX}, \operatorname{Pos} Y)\) is within the radial range of any pore
                \(x_{M i} \leftarrow x_{j}\)
                \(y_{M i} \leftarrow y_{j}\)
                \(d_{i} \leftarrow d_{j}\)
            end if
        end for
    else
        for \(j=0 ; j<\) Number of pores; \(j++\) do
            if \(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}<\left(\frac{d_{j}}{2}\right)^{2}\) then
                        \(x_{M i} \leftarrow x_{j}\)
                        \(y_{M i} \leftarrow y_{j}\)
                \(d_{i} \leftarrow d_{j}\)
            end if
        end for
    end if
```

Should the 2-dimensional point ($\mathrm{PosX}, \mathrm{PosY}$) be within the radial range of a pore, that pore is the one with which the particle would interact, leading to either case 2 or 3 . Otherwise, we have case 1. After finishing the assignment, it would be convenient to define a function telling the z-coordinate of the pore on the other side of $z_{M i}$.

```
Algorithm 4 Determining other side
Require: \(z\)
    if \(z==0\) then
        return \(Z_{3}-L_{z}\)
    else if \(z==Z_{1}\) then
        return \(Z_{2}\)
    else if \(z==Z_{2}\) then
        return \(Z_{1}\)
    else if \(z==Z_{3}\) then
        return \(L_{z}\)
    else
        return \(Z_{3}\)
    end if
```

We can now calculate t_{M}. First, there is the scenario that it is completely in one of the two chambers and has positive z-velocity.

Algorithm 5 Computing t_{M}, first scenario

if $v_{i z}>0$ and $\left(\left(z_{i} \geq \frac{\sigma_{i}}{2}\right.\right.$ and $\left.z_{i} \leq Z_{1}-\frac{\sigma_{i}}{2}\right)$ or $\left(z_{i} \geq Z_{2}+\frac{\sigma_{i}}{2}\right.$ and $\left.\left.z_{i} \leq L_{z}-\frac{\sigma_{i}}{2}\right)\right)$ then \triangleright Judgement criteria, likewise for the rest

$$
\text { if } d_{i}==0 \text { then }
$$

$$
t_{M} \leftarrow \frac{z_{M i}-\sigma_{i} / 2-z_{i}}{v_{i z}}
$$

else if $\sigma_{i}>d_{i}$ then $\quad \triangleright$ Particle larger than pore, only case 2 possible
$t_{M} \leftarrow$ Quartic equation solutions $\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right)$
else
$t_{M} \leftarrow$ Quartic equation solutions $\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right)$
if $t_{M}==\infty$ or $z_{i}+v_{z i} t_{M}>z_{M i}$ then \quad If no solution in previous step or solution non-physical
$\cos \theta_{1} \leftarrow \frac{\left(x_{M i}-x_{i}\right) v_{x i}+\left(y_{M i}-y_{i}\right) v_{y i}}{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}} \cdot \sqrt{v_{x i}^{2}+v_{y i}^{2}}}$
$\sin \theta_{2} \leftarrow \sqrt{1-\cos ^{2} \theta_{1}} \cdot \frac{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}}{\left(d_{i}-\sigma_{i}\right) / 2}$
$t^{2} \leftarrow\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}+\left(\frac{d_{i}-\sigma_{i}}{2}\right)^{2}+\left(d_{i}-\sigma_{i}\right) \cdot \sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}} \cdot$
$\left(\cos \theta_{1} \sqrt{1-\sin ^{2} \theta_{2}}-\sqrt{1-\cos ^{2} \theta_{1}} \sin \theta_{2}\right)$
if $z_{i}+v_{z i} t \leq$ Determining other $\operatorname{side}\left(z_{M i}\right)$ then
$t_{M} \leftarrow t \quad \triangleright$ Case 3
else
$t_{M} \leftarrow$ Quartic equation solutions $\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}\right.$, Determining other side $\left.\left(z_{M i}\right), \sigma_{i}\right)$ Case 2 with other end of pore
end if end if
end if
end if

The next scenario differs from the first only in that the z-velocity is negative, following the identical logic as before.

```
                        Algorithm 6 Computing \(t_{M}\), second scenario
    if \(v_{i z}<0\) and \(\left(\left(z_{i} \geq \frac{\sigma_{i}}{2}\right.\right.\) and \(\left.z_{i} \leq Z_{1}-\frac{\sigma_{i}}{2}\right)\) or \(\left(z_{i} \geq Z_{2}+\frac{\sigma_{i}}{2}\right.\) and \(\left.\left.z_{i} \leq L_{z}-\frac{\sigma_{i}}{2}\right)\right)\) then
        if \(d_{i}==0\) then
            \(t_{M} \leftarrow \frac{z_{M i}+\sigma_{i} / 2-z_{i}}{\nu_{i}}\)
        else if \(\sigma_{i}>d_{i}\) then
            \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right)\)
    else
        \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right)\)
        if \(t_{M}==\infty\) or \(z_{i}+v_{z i} t_{M}<z_{M i}\) then
            \(\cos \theta_{1} \leftarrow \frac{\left(x_{M i}-x_{i}\right) v_{x i}+\left(y_{M i}-y_{i}\right) v_{y i}}{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}} \cdot \sqrt{v_{x i}^{2}+v_{y i}^{2}}}\)
            \(\sin \theta_{2} \leftarrow \sqrt{1-\cos ^{2} \theta_{1}} \cdot \frac{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}}{\left(d_{i}-\sigma_{i}\right) / 2}\)
            \(t^{2} \leftarrow\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}+\left(\frac{d_{i}-\sigma_{i}}{2}\right)^{2}+\left(d_{i}-\sigma_{i}\right) \cdot \sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}\).
    \(\left(\cos \theta_{1} \sqrt{1-\sin ^{2} \theta_{2}}-\sqrt{1-\cos ^{2} \theta_{1}} \sin \theta_{2}\right)\)
                if \(z_{i}+v_{z i} t \leq\) Determining other \(\operatorname{side}\left(z_{M i}\right)\) then
                    \(t_{M} \leftarrow t\)
                else
                    \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}\right.\), Determining other \(\left.\operatorname{side}\left(z_{M i}\right), \sigma_{i}\right)\)
                end if
            end if
        end if
    end if
```

The third is when the particle is completely inside a pore.

Algorithm 7 Computing t_{M}, third scenario

```
if \(\left(z_{i}==0\right.\) and \(\left.v_{i z}<0\right)\) or ( \(z_{i} \geq Z_{1}\) and \(\left.z_{i} \leq Z_{2}\right)\) or ( \(z_{i} \geq Z_{3}\) and \(\left.z_{i} \leq L_{z}\right)\) then
    if \(z_{i} \geq Z_{1}\) and \(z_{i} \leq Z_{2}\) then
        if \(v_{z i}>0\) then
                \(z_{M i} \leftarrow Z_{2}\)
            else
                \(z_{M i} \leftarrow Z_{1}\)
            end if
    else if \(z_{i} \geq Z_{3}\) and \(z_{i} \leq L_{z}\) then
        if \(v_{z i}>0\) then
            \(z_{M i}=L_{z}\)
        else
            \(z_{M i} \leftarrow Z_{3}\)
        end if
    else
        \(z_{M i} \leftarrow Z_{3}-L_{z}\)
    end if
end if
\(\cos \theta_{1} \leftarrow \frac{\left(x_{M i}-x_{i}\right) v_{x i}+\left(y_{M i}-y_{i}\right) v_{y i}}{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}} \cdot \sqrt{v_{x i}^{2}+v_{y i}^{2}}}\)
\(\sin \theta_{2} \leftarrow \sqrt{1-\cos ^{2} \theta_{1}} \cdot \frac{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}}{\left(d_{i}-\sigma_{i}\right) / 2}\)
\(t^{2} \leftarrow\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}+\left(\frac{d_{i}-\sigma_{i}}{2}\right)^{2}+\left(d_{i}-\sigma_{i}\right) \cdot \sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}} \cdot\left(\cos \theta_{1} \sqrt{1-\sin ^{2} \theta_{2}}-\sqrt{1-\cos ^{2} \theta_{1}} \sin \theta_{2}\right)\)
if \(\left|v_{z i}\right| t \leq\left|z_{M i}-z_{i}\right|\) then \(\quad \triangleright\) Determine if particle will hit pore interior or rim \(t_{M} \leftarrow t \quad \triangleright\) Case 3
else
    \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right) \quad \triangleright\) Case 2
end if

Finally, the particle could be partially embedded.
When implementing, Algorithms 5 to 8 should be assembled together.

\section*{Algorithm 8 Computing \(t_{M}\), fourth scenario}
```

if $\left(z_{i} \leq Z_{1}\right.$ and $\left.z_{i} \geq Z_{1}-\frac{\sigma_{i}}{2}\right)$ or $\left(z_{i} \leq Z_{3}\right.$ and $\left.z_{i} \geq Z_{3}-\frac{\sigma_{i}}{2}\right)$ or ($z_{i} \geq 0$ and $\left.z_{i} \leq \frac{\sigma_{i}}{2}\right)$ or ($z_{i} \geq Z_{2}$ and $\left.z_{i} \leq Z_{2}+\frac{\sigma_{i}}{2}\right)$ then
if $z_{i} \leq Z_{1}$ and $z_{i} \geq Z_{1}-\frac{\sigma_{i}}{2}$ then
$z_{M i} \leftarrow Z_{1}$
else if $z_{i} \leq Z_{3}$ and $z_{i} \geq Z_{3}-\frac{\sigma_{i}}{2}$ then
$z_{M i} \leftarrow Z_{3}$
else if $z_{i} \geq 0$ and $z_{i} \leq \frac{\sigma_{i}}{2}$ then
$z_{M i} \leftarrow 0$
else
$z_{M i} \leftarrow Z_{2}$
end if \quad Reassign $z_{M i}$

```
    if \(\sigma_{i}>d_{i}\) then \(\quad \triangleright\) Particle larger than pore, only case 2 possible
        \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right)\)
    else
        \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right) \quad \triangleright\) Case 2
        if \(t_{M}==\infty\) or \(\left(v_{z i}>0\right.\) and \(\left.z_{i}+v_{z i} t_{M}>z_{M i}\right)\) or \(\left(v_{z i}<0\right.\) and \(\left.z_{i}+v_{z i} t_{M}<z_{M i}\right)\) then \(\triangleright\) If no solution in previous
step or solution non-physical
            if \(\left(z_{M i}-z_{i}\right) v_{z i}>0\) then \(\triangleright\) Particle flies towards/into pore
                    \(\cos \theta_{1} \leftarrow \frac{\left(x_{M i}-x_{i}\right) v_{x i}+\left(y_{M i}-y_{i}\right) v_{y i}}{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}} \cdot \sqrt{v_{x i}^{2}+v_{y i}^{2}}}\)
            \(\sin \theta_{2} \leftarrow \sqrt{1-\cos ^{2} \theta_{1}} \cdot \frac{\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}}{\left(d_{i}-\sigma_{i}\right) / 2}\)
            \(t^{2} \leftarrow\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}+\left(\frac{d_{i}-\sigma_{i}}{2}\right)^{2}+\left(d_{i}-\sigma_{i}\right) \cdot \sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}\).
\(\left(\cos \theta_{1} \sqrt{1-\sin ^{2} \theta_{2}}-\sqrt{1-\cos ^{2} \theta_{1}} \sin \theta_{2}\right)\)
    if \(z_{i}+v_{z i} t \geq \min \left(z_{M i}\right.\), Determining other \(\left.\operatorname{side}\left(z_{M i}\right)\right)\) and \(z_{i}+v_{z i} t \leq \max \left(z_{M i}\right.\), Determining other side \(\left.\left(z_{M i}\right)\right)\)
then
                            \(t_{M} \leftarrow t \quad \triangleright\) Case 3
                    else
                            \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}\right.\), Determining other side \(\left.\left(z_{M i}\right), \sigma_{i}\right) \triangleright\)
Case 2 with other end of pore
                    end if
            else \(\quad \triangleright\) Particle flies away from/out of pore
            \(t_{M} \leftarrow\) Quartic equation solutions \(\left(d_{i}, x_{i}, v_{x i}, x_{M i}, y_{i}, v_{y i}, y_{M i}, z_{i}, v_{z i}, z_{M i}, \sigma_{i}\right) \quad \triangleright\) Case 2
            end if
        end if
    end if
end if

\subsection*{2.2. Collision dynamics}

After \(t_{M}\) units of time passed, one particle-membrane collision would happen. Using the relevant mathematics described, we could write the following algorithm. It accounts for the rare case where a particle whose diameter is larger than that of the pore happens to touch the pore rim at every point. In this case, the dynamics is identical to colliding with a non-pore region.

\section*{Algorithm 9 Collision dynamics algorithm}
```

if ($z_{i} \geq Z_{1}$ and $z_{i} \leq Z_{2}$) or ($z_{i} \geq Z_{3}$ and $z_{i} \leq L_{z}$) then
\triangleright Case 3
$n_{x} \leftarrow \frac{x_{M i}-x_{i}}{d_{i}-\sigma_{i}} \sigma_{i}$
$n_{y} \leftarrow \frac{y_{M i}-y_{i}}{d_{i}-\sigma_{i}} \sigma_{i} \quad \triangleright$ Normal vector, only x and y
$v_{\| x} \leftarrow \frac{n_{x} v_{x i}+n_{y} v_{y i}}{n_{x}^{2}+n_{y}^{2}} n_{x}$
$v_{\| y} \leftarrow \frac{n_{x} v_{x i}+n_{y} v_{y i}}{n_{x}^{2}+n_{y}^{2}} n_{y} \quad \triangleright$ Velocity along normal vector
$v_{x i} \leftarrow v_{x i}-2 v_{\| x}$
$v_{y i} \leftarrow v_{y i}-2 v_{\| y} \quad \triangleright$ Modifying velocity
else
if $d_{i}==0$ or $\left(\sigma_{i}>d_{i}\right.$ and $\left.\sqrt{\left(x_{M i}-x_{i}\right)^{2}+\left(y_{M i}-y_{i}\right)^{2}}<10^{-6}\right)$ then
$v_{z i} \leftarrow-v_{z i}$
else
$n_{x} \leftarrow\left(\frac{d_{i} / 2}{\sqrt{\left(x_{i}-x_{M i}\right)^{2}+\left(y_{i}-y_{M i}\right)^{2}}}-1\right)\left(x_{M i}-x_{i}\right)$
$n_{y} \leftarrow\left(\frac{d_{i} / 2}{\sqrt{\left(x_{i}-x_{M i}\right)^{2}+\left(y_{i}-y_{M i}\right)^{2}}}-1\right)\left(y_{M i}-y_{i}\right) \quad \triangleright$ Normal vector, x and y
if $\min \left(\min \left(\left|z_{i}\right|,\left|z_{i}-Z_{1}\right|\right), \min \left(\left|z_{i}-Z_{2}\right|,\left|z_{i}-Z_{3}\right|\right)\right)==\left|z_{i}\right|$ then
$n_{z} \leftarrow z_{i}$
else if $\min \left(\min \left(\left|z_{i}\right|,\left|z_{i}-Z_{1}\right|\right), \min \left(\left|z_{i}-Z_{2}\right|,\left|z_{i}-Z_{3}\right|\right)\right)==\left|z_{i}-Z_{1}\right|$ then
$n_{z} \leftarrow z_{i}-Z_{1}$
else if $\min \left(\min \left(\left|z_{i}\right|,\left|z_{i}-Z_{1}\right|\right), \min \left(\left|z_{i}-Z_{2}\right|,\left|z_{i}-Z_{3}\right|\right)\right)==\left|z_{i}-Z_{2}\right|$ then
$n_{z} \leftarrow z_{i}-Z_{2}$
else
$n_{z} \leftarrow z_{i}-Z_{3}$
end if

```
\(\triangleright\) Normal vector, \(z\) component
\(\triangleright\) Velocity along normal vector
\(\triangleright\) Modifying velocity
```

 end if
 end if

```
```


[^0]: *Electronic address: kai.zhang@dukekunshan.edu.cn

