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This material elaborates the analytical theory of the collision dynamics between hard spheres and cylindrically
porous membranes, as well as the computer algorithms to implement it in event-driven molecular dynamics simulations.

1. THEORY

There are three possibilities on how a particle collides with a cylindrical pore with a circular opening: it can hit a
non-porous area (case 1), or hit and bounce off the edge of the pore (case 2), or directly collide with the inner wall of
the pore (case 3) as shown in Fig. S1.

Case 2

Case 1

FIG. S1: Three cases of particle-pore collision.

Below we first calculate the time it takes for a particle outside the pore to reach the membrane in one of the three
cases. Then we provide the dynamical details about the velocity vectors during the collision between the particle and
the pore.

1.1. Collision time

In case 1, the time till colliding with the membrane t); is simply the particle’s z-direction distance to the membrane
it flies toward divided by its z velocity, i.e.

Z—ZM
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where zj; is the z-position of the membrane in question. For the next two cases, the particle would be flying towards
a certain pore. We will denote its position as that of its geometric center, Ty = (xprr,ym, 2m). Tts diameter we
denote as d. The particle originally at position T collides with the membrane when its position becomes T
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In case 2, by the time the collision occurs, in other words, when T becomes ¥' =T + tMV, as shown in Fig. S2.
It shows specifically the case where the particle is flying towards the pore from a non-membrane space. However, in
terms of physics, all arguments are valid in the case that the particle is inside the membrane:

FIG. S2: Case 2 collision process

The way to determine ¢p; lies in the right triangle with dashed edges, formed from the particle’s geometric/mass
center, its vertical projection onto the plane of the pore, and the particle-pore contact point. In the pore’s plane,
parallel to the zy-plane, the distance from the particle center to the pore center would be:

5 = (@ vatar — o) + (4 + vytar — yn)? (2)

And the difference between it and the pore radius is:

d
Finally, by the Pythagorean theorem:
o\? 2 2
<§> = (Z+UZtM —ZM) +6 (4)

Now we have an equation with ¢); as the only unknown. To solve it, we must first expand it into a polynomial
form. For simplicity, let us define:
v: = vi + vg + v?
Ty = (iL'—.’EM)UI + (y_yM)Uy + (Z _ZM)UZ
Ar=/(z —xm)? + (y —ym)? + (2 — 2m)? ()

Then through algebraic manipulation, we convert Eq.(4) into the following 4th-order polynomial with normalized
highest-order coefficient

thy +ath + b3, +cty +d=0 (6)



where
4r,
a = 2
b— 4r37d2(vz+v§) 2(Ar)2+7d2;"2
- v + v2
c = 2d? (z—zp)v. 410 [4(AT)? —d? —0?]
- v

[(ar2+ L2522 ]~ @[ —za)* +(y—yar)?]

d= E (7)

v

To solve this equation, the first step is to define

a
s=tm+ 1 (8)
Substituting ¢, for s in Eq.(6), we get
s+ ps?+gs+w=0 (9)
where
p=>b-— %aQ
a=%-F+e

w=—deat 4 &b _ac g (10)

Eq.(9) has a systemic solution set. To solve for it, we must first obtain the solution for this cubic equation of u
4dwp — ¢? B
S =

Such an equation has at least one solutioion and at most three, u; (i = 0,1,2). Now, the determinant A for any cubic
equation or the form x® + Az? + Bx + C =0 is

3 P o

U’ - U —wu + 0. (11)

P=B-4
Q=2A-4B4C (12)
Once we plugin A= -5, B=—w, C = %, there are three different scenarios

A>01U0=U1=u2=</\/3—%—€/\/3+%—§

A
A—glU=TEZS

u1=U2:3% g

ug = 2 —%cos@—% "
A<0fur=2/-Fcos(0+ %)% “ﬁmw”<_%$>

w2 =2y E cos (0- %) - 4

For any u;, if ¢ > 0, then to get real solutions of s, and thus of t);, we need to solve

24+ 5v/2u—p+u—vVu2—w=0

2 —s\2u—p+u+Vuz—w=0 (14)
On the other hand, if ¢ < 0, the equations become:

sS4 sv/2u—p+u+Vui—w=0
2 —s\2u—p+u—Vu2—w=0 (15)



For any solution of t5; solved, the least positive value is the answer we search for.
Finally, in case 3, which only happens when o < d, we again taking the case where the particle starts in a non-
membrane space. For this type of collision, the z-direction: does not matter, therefore we need only care about the

motion parallel to the xy-plane:

FIG. S3: Case 3 collision process in the xy-plane

In the Fig. S3, only the x and y coordinates and components are considered. t;; could be calculated as

-— -—
A Ay
||7|| ‘/v‘%{—'[);

_>
To calculate ||Ar||, we rely on a trigonometric relation. The angle 67 could be calculated using the inner product
between ¥V and the difference vector between T v and T

) V- (Tu-T)
COS =
IR

(16)

ta

(17)

And by the law of sines, we get that

; _wsm —w — cos
sindy = S sin = S V1= cos?0; (18)

Now, 65 solved this way would have two possble solutions, but we only take 62 < 90°, which makes physical sense.
In this case, cosf2 > 0. We finalize our calculation with using the law of cosines to solve for ||Ar|| using this relation:

H
[|Ar|f?

d—o\? d—o
|?M_?||2+< D) > —2”?1\/[—?”'T'COS(7T—91—92)

d—o\2
= H?M —?||2+ <2a> + H?JLI —?H < (d— o) -cos(fy + 02)

— 72 - 7P+ (57) (19)
+ [Ty =T (d—0) - (cosh11/1 —sin® By — \/1 — cos? 0, sin 6,)

H
Solving ||Ar|| this way and replugging it into (16) will get us the value of tp;.



1.2. Collision dynamics

In case 1, the only change to that particle’s velocity is that v, reverses sign
Vy — —, (20)

In case 2, the dynamics is equivalent to a sphere elastically colliding with a tangential plane passing through the
particle-pore contact point. Therefore, what would happen is that the component of the initial velocity vector parallel
to this plane’s normal line, 7”, would change sign. Meanwhile, the corresponding normal vector o= (ng,ny,nz) to
the plane is along the line segment that connects the particle’s contact point to the pore edge and its center. The
physical process could be understood using the figure below, where the red and blue vectors denotes the velocity
before and after collision respectively, along with their components with respect to o

FIG. S4: Dynamics of case 2

By the above reasoning, T can be chosen to be the vector starting from the particle-pore contact point to the
particle center. If we refer back to Fig. S2 and equations (2) and (3), taking account that here ¢y = 0

A =8 = 4= = o st

N, =2—2ym (21)

In the xy-plane, (n;,ny) should follow the direction from the particle center to the pore center, therefore

ng =46 - v % _ d/2 _] .

Vi(ew —2)? + (yu — y)? [\/(l‘M —2)% + (ym —y)? L (@ar — )

[ Ym — Y _ d/Q B -

y =96 V@ —2)2 + (yar — y)? LAWW—@2+@M—yP 1]@M y) (22)

So
Vo VzNg + Vyny + 021
7 = ﬁ: L y Ty Ty "
O R R e .
Meanwhile
Vi=-¥]

=V (24)



By combining (23) and (24), we get
7/2 ’L+71‘=7L—7”:(7L+7\|)—27”:?—27H:?—2(V>~ﬁ>)ﬁ> (25)

Or in terms of vector components

vl = v, — QTHV}WQ Ny
v =, — 2%y (26)
y Y ||ﬁ%z y
v: = Vs — 215

In case 3, which is specific to when a particle has a diameter smaller than the pore it enters, the collision can also
considered to be equivalent to that between a sphere and a tangential plane passing the particle-pore contact point.
The main difference between this case and the previous is that v, remains unchanged. Any change in velocity happens
in the zy-plane. Hence, we have the following figure to depict this process with only the zy dimension:

FIG. S5: Dynamics of case 3 in xy-plane

Per the same logic in case 2, what we have is that 7” reverses direction, only now it is limited to considering inside
the zy plane. Here, o is parallel to T — ?, so we can choose to make them equal, in other words

g g
T = (ng,ny) = NOTED T y)2(xM —oym —Y) = (M — 2,y — y) (27)
In this way
7 . ﬁ> VMg + VyNy —
VISR e 2%)

The rest follows similar logic to the case 2 dynamics, and we would get:

V=, — 2?—‘7?2 Ny
ot
vy = vy ~ 21

2. ALGORITHM

This session provides sample algorithms to implement above theoretical results for particle-pore collision dynamics.



2.1. Collision time

Before getting to the algorithm for computing t5;, we should first write down the solution for the case 2 equation
for tpr in code. To start, the solutions to (11) should be

Algorithm 1 Cubic equation solutions

Require: A, B,C
P«B-4 Q22 4B, (O

if (£)*+(9)* > 0 then

else if (%)3 + (%)2 ==0 then

3/ Q A
UlFQ —32 T 3

wl

UQIU3<——3—%—§
else
0« 1 =@z
3arccos<m
uy — 2 —gcose—g
Uz — 2 —gcos(ﬁ—i—%”)—?
uz < 2 —gcos( —%’r)—%
end if

With Algorithm 1, we can define a function for solving tj; under case 2, inputing the positions and diameters of
both particle and pore, plus the particle’s velocity components.



Algorithm 2 Quartic equation solutions

Require: d,z,v:,z7, Y, Uy, YM, 2, V2, 20, O
tyv — 400
Ty — (. — M)V + (y — ym)vy + (2 — 2m) v
(AT < (x —2m)® + (¥ — yar)* + (2 — 2m)?
v? vi + ”5 + vg

a<+ g
47'57d2(v5+'u§) Q(AT)Q_‘_#
b vd + V2
242 (z—zp)vs+ro[4(AT)2—d% —0?)
C < .. p
[<AT)2+d 77 | —d*[(a—2 ) +(y—ym)?]
d <+ —

D bg— ga2

5 -G te

we =g+ 5 - § +d

Cubic equation solutions (A =—5,B=-wC=%—

o ‘ﬂ,
N

fori=0;i<3; i++ do
if ¢ > 0 then
if 2u; —p > 0 and uj —w > 0 and 41/u? — w — 2u; — p > 0 then
te S (V2 Ay —w — 2ui —p) — T3

ta —t> 10710 ? min(tM,t) ctm

t(—%(—\/Zui—p—\/4\/u12—w—2ui—p)—2—g
tam —t>107107 min(tM,t) tv
end if
if2ui—p20anduf—w20and—4\/uf—w—2ui—p20then
te%(\/2uifp+\/74\/uf7w72uifp)7%

tar <t > 1071 ? min(tar, t) : tur

t<—%(\/2ui—p—\/—4\/uf—w—2ui—p)—2—g
tm —t>107107 min(tar,t) @ ta
end if
else
if 2u; —p > 0 and v? —w > 0 and 4\/u? — w — 2u; — p > 0 then

b H(V2u =P+ AT w20 —p) -

ta —t>107107 min(tM,t) tv

t <+ %(\/2ui—p—\/4\/uf—w—2ui—p)—%
ta —t > 10710 ? min(tM,t) ity

end if

if 2u; —p >0 and v} —w > 0 and —4+/u? — w — 2u; —p > 0 then
t(—%(—\/Qui—p—i— \/—4 u? —w —2u; —p) — %

tam —t>107107 min(tM,t) tv

t S (V2= p— - AVAE —w — 20— p) — T3
ta —t> 10710 ? min(tM,t) ity
end if
end if
end for
return tys




In theory, we should test for ¢ > 0. But numerical computation comes with a finite precision, therefore a calculation
that should yield 0 might give some value extremely close but nonzero. In our program, we chose € = 10719 as our
tolerance.

Before we try to compute t;;, we have to determine which of the three cases we are in. To do this, we must
first determine if the particle is completely outside the membrane area, partly embedded in a pore, or completely
inside one. After that is determined, we should assign to that particle the parameters of the pore it flies toward,
(a1, Ynmis 20, di), assuming such a pore exists. Shown below is the algorithm to do this, with the particle’s label
number ¢ as input.

Algorithm 3 Assigning pore parameters

Require: i
if (z; > %andzingf%) or (zingJr%andzingf%)then
xypi — 0
YMi +~0
di «—0
ZMi — iy > 07 (Zl—%ZZi? Z1:Z;3): (Z2—|—%§z1‘7 ZQ:O)
te v, >07 EMi—0i/2—%; . EMitoi/2—z;

Viz Viz

PosX < x; + vigt > z-position of particle when it just reaches membrane
PosY + yi + vyt > y-position of particle when it just reaches membrane
for j = 0; 7 < Number of pores; j + + do

if (PosX — x;)% + (PosY — y;)% < (%)2 then > If (PosX,PosY) is within the radial range of any pore
TMi < Tj
YMi < Yj
di < dj
end if
end for
else
for j = 0; j < Number of pores; j + + do
if (2, —2)% 4 (g —y;)® < (%)2 then
TMi < Tj
YMi < Yj
di < d]'
end if
end for
end if

Should the 2-dimensional point (PosX, PosY) be within the radial range of a pore, that pore is the one with which
the particle would interact, leading to either case 2 or 3. Otherwise, we have case 1. After finishing the assignment,
it would be convenient to define a function telling the z-coordinate of the pore on the other side of zj;;.

Algorithm 4 Determining other side

Require: z

if z == 0 then
return Zs — L,

else if z == Z; then
return 7,

else if z == 75 then
return 7,

else if z == Z3 then
return L.

else
return Z3

end if

We can now calculate tp;. First, there is the scenario that it is completely in one of the two chambers and has
positive z-velocity.
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Algorithm 5 Computing ¢, first scenario

if v;» > 0 and ((z; > % and z; < Z; — %) or (z; > Za + % and z; < L, — %)) then > Judgement criteria, likewise for
the rest

if d; == 0 then > Case 1
tar ZMi*TZiZ/?*Zi

else if 0; > d; then > Particle larger than pore, only case 2 possible
ty + Quartic equation solutions(d;, s, Vai, TMi, Yi, Vyi, YMis Ziy Vziy ZMis O5)

else
tm < Quartic equation solutions(ds, i, Vai, TMi, Yiy Vyis YMi, Ziy Vziy ZMiy Oi)
if tpr == oo or z; + v.itar > zpi then > If no solution in previous step or solution non-physical

(i —2i)Vai+ (Y —Yi)Vyi
\/(zMi*Zz)2+(y1m*yai)2'\/”ii“’zi

. V(@i —2i)2+(yari —vi)?
sin @ < /1 — cos? 0 - @2

cos 01

2
t2 — (zrms — xi)Q + (yms — Z/i)2 + (%) + (& — oi) - \/(mhﬂ*mi)z‘i’(yMi*yi)Q
(cos 01v/1 —sin? 6 — /1 — cos? 6; sin 92)

if z; + v.it < Determining other side(zas;) then

ta —t > Case 3
else
ty + Quartic equation solutions(d;, s, Vzi, Tai, Yi, Vyi, YMi, Zis Vzi, Determining other side(zns:), o) >
Case 2 with other end of pore
end if
end if
end if
end if

The next scenario differs from the first only in that the z-velocity is negative, following the identical logic as before.

Algorithm 6 Computing ¢,;, second scenario

if v;. <0 and ((z; > % and z; < 71 — %) or (z; > Za + % and z; < L, — %)) then
if d; == 0 then

2Mitoi/2—24
iy o

iz
else if o; > d; then
ty < Quartic equation solutions(d;, Zs, Vzi, i, Yi, Vyi, YMi, Ziy Vziy ZMi, O5)

else
ty <+ Quartic equation solutions(d;, Zs, Vzi, TMi, Yi, Vyi, YMis Ziy Vziy ZMi, O5)
if tpy == o0 or z; + v.itym < zpi then

(xari =) Vai+ (Y —Yi)Vyi
V@ari—e)2+(wari—vi)2- w2+,

s \/(mMi—CCi)z-‘r(yMi—yi)Q
sinfy < /1 — cos? 0, - @2

cos 0y +

2
t2 — (v — ®)? A+ (y — w)? + (L;‘”) + (di — oi) « V(@mi — )2+ (Yyari — yi)2
(cos 011/1 — sin? @5 — /1 — cos? 01 sin 92)

if z; + v.it < Determining other side(zas;) then
ta —t

else
ty < Quartic equation solutions(d;, s, Vzi, i, Vi, Vyi, YMi, Zi, Vzi, Determining other side(zar:), o)

end if

end if
end if
end if

The third is when the particle is completely inside a pore.
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Algorithm 7 Computing ¢, third scenario

if (zi ==0and v;» <0) or (z; > Z1 and z; < Z2) or (z; > Z3 and z; < L.) then
if Zi 2 Z1 and Zi S Z2 then
if v.; > 0 then
ZMmi — L2
else
ZMi — 21
end if
else if z; > Z3 and z; < L, then
if v.; > 0 then

ZMi = Lz
else
ZMi — 23
end if
else
2Zmi < Z3 — L,
end if
end if > Reassign zas;
cos by (@ari =) vai+ (Y —Yi)Vyi

V (@i~ 2+ (i —vi) % v2, +v§i

x =) i—yi)?
sinf /T~ cos? ;- Va0 v
2
12 (@ari— )%+ (yas — i) 2 + (%) +(di—0i) /(xars — 26)2 + (yari — yi)? - (cos 01v/1 —sin? 03 — /1 — cos2? 0, sinég)

if |vz|t < |z — 2i| then > Determine if particle will hit pore interior or rim
ta —t > Case 3
else
tym < Quartic equation solutions(di, i, Vai, TMi, Yi, Vyiy YMiy Ziy Vziy ZMiy O5) > Case 2
end if

Finally, the particle could be partially embedded.
When implementing, Algorithms 5 to 8 should be assembled together.
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Algorithm 8 Computing t,;, fourth scenario

if(z,'§Z1andzizZlf%)or(zi§Z3andzi2Z37%)or(zianndzig%)or(ziZZgandzingJr%)then
ifzing andziZZl—%then

Zmi — 21
else if z; < Z3 and z; > Z3 — % then
ZMi & 23
else if z; > 0 and z; < % then
zymi < 0
else
ZMi < 22
end if > Reassign zns;
if 0; > d; then > Particle larger than pore, only case 2 possible
ty < Quartic equation solutions(d;, Zs, Vzi, i, Yi, Vyi, YMis Ziy Vziy ZMi, O5)
else
ty < Quartic equation solutions(d;, Z;, Vzi, TMi, Yi, Vyi, YMis Ziy Vziy ZMi, O5) > Case 2
if tyr == oo or (v > 0 and z; + vty > zni) or (va; < 0 and 2 + vzity < zai) then > If no solution in previous
step or solution non-physical
if (zm4s — 2i)v2; > 0 then > Particle flies towards/into pore
cos 0 (a1 =) Vi +(Ynri —Yi)Vyi

V(@ ari—2) 2+ (i —vi)2- viﬁrvgi

o —2)2 a2
sin 0 + VI — cos? B - Vi) vy

2
2 (zam — x)® A+ (yme — ¥i)? 4 (C“;—"’) + (di — i) - (xmi— )2+ (yari — yi)?
(cos 011/1 — sin? 03 — /1 — cos? 04 sin 02)

if z; 4+ v.it > min(zam,, Determining other side(zar:)) and z; + v.:t < max(zar;, Determining other side(zas;))
then
ta +— t > Case 3
else
ty < Quartic equation solutions(d;, i, Vai, Tai, Yiy Vyi, YMi, Zi, Vzi, Determining other side(zari), 03) >
Case 2 with other end of pore

end if
else > Particle flies away from/out of pore
ty < Quartic equation solutions(d;, i, Vzi, i, Yi, Vyi, YMi, Ziy Vzi, ZMi, Os) > Case 2
end if
end if
end if
end if

2.2. Collision dynamics

After t); units of time passed, one particle-membrane collision would happen. Using the relevant mathematics
described, we could write the following algorithm. It accounts for the rare case where a particle whose diameter is
larger than that of the pore happens to touch the pore rim at every point. In this case, the dynamics is identical to
colliding with a non-pore region.
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Algorithm 9 Collision dynamics algorithm

if (z; > Z1 and z; < Z3) or (z; > Z3 and z; < L) then
Ng & IMi—Z%ig,

d;
YMi—Yi .
Ny < P p—— o;
Mg VUgitNyVyi
v — 2 2 x
[ n$+ny
NgVgi+NyVyq
lly "m+"y Y

Vzi ¢ Vzi — 2V)|
Vyi <= Vyi — QUHy
else

if di ==0 or (0; > d; and \/(le — )2 + (yai — yi)2 < 107%) then

Vzi £ —Vzi
else

Ng — ( L2 s — 1> (Tni — i)

\/(ﬂ%—IMi)2+(yi—yMi)

;)2
Ny - -1 i —Yi
Y (\/(Iz—zz\li)2+(yi—y1\4¢)2 ) (yars =)

if min(min(|z;|, |z: — Z1|), min(|z; — Za, |z: — Z3|)) == |z:| then

Ny < Z;

else if min(min(|z;|, |z: — Z1]), min(|z; — Z2|, |zi — Z3])) == |2: — Z1]| then

?IZ(*Zile

else if min(min(|z;|, |z: — Z1]), min(|z; — Z2|, |z: — Z3|)) == |2: — Z2| then

N, < 2i — Lo
else

Ny < 2, — 23
end if

nmvm,+ny Vyi +nv,,

T n2xn21np2
ng +ny+nz

Mg VUgitNyVyi+Nzvz4
2 2 2
nI+ny +nz

NgVgitNyVyi+tnzvz,;
2 2 2
nx+ny +nz

Vo

T

Ylly Ty

V)= < 2
Vai = Vi — 20|
Vyi < Uy — 2’[)||y
Vzi € Vzi — QQJHZ
end if
end if

> Case 3

> Normal vector, only = and y

> Velocity along normal vector

> Modifying velocity
> Case 1 or rare case

> Case 2

> Normal vector,  and y

> Normal vector, z component

> Velocity along normal vector

> Modifying velocity




