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1 Density and velocity spatiotemporal correla-

tions

1.1 Definition

The velocity spatial correlation is defined as

Cv(r) =
〈v(r0, t0) · v(r0 + r, t0)〉r0,t0
〈v(r0, t0) · v(r0, t0)〉r0,t0

, (1)

whereas the velocity temporal autocorrelation is defined as

Cv(t) =
〈v(r0, t0) · v(r0, t0 + t)〉r0,t0
〈v(r0, t0) · v(r0, t0)〉r0,t0

. (2)

Similarly, the density spatial correlation is defined as

Cn(r) =
〈n(r0, t0)n(r0 + r, t0)〉r0,t0
〈n(r0, t0)n(r0, t0)〉r0,t0

, (3)
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and the density temporal autocorrelation is defined as

Cn(t) =
〈n(r0, t0)n(r0, t0 + t)〉r0,t0
〈n(r0, t0)n(r0, t0)〉r0,t0

. (4)

Here, 〈...〉r0,t0 denotes an average over all possible positions and times. Since

the flow is isotropic, we consider only the spatial correlation as a function of

the magnitude of the position vector r = |r|, which is achieved by averaging

Cv(r) and Cn(r) over a constant r. The number density, n, is proportional to

the local light intensity I (Sec. 2.1). We further subtract the intensity by the

mean intensity so that 〈I〉r0,t0 = 0.

1.2 Estimate of density correlation time

We write the density correlation time τn as

τn =
λ2
n

Dv
=

λ2
n

〈v〉2τv
, (5)

where λn is the density correlation length, characterizing the length scale of

density inhomogeneity in the system (Fig. 2E). The random velocity fluctua-

tions are treated as a stochastic process with an effective diffusion coefficient

Dv = 〈v〉2τv, where 〈v〉 is the average local velocity and τv is the velocity cor-

relation time (Fig. 2F).

For high-concentration bacterial suspensions with active turbulence, λn is

naturally set by the size of bacterial clusters at the scale of turbulent vortices.

Since bacteria are well aligned within each cluster, the average local velocity

should equal to the velocity of the swirling vortices. Thus, λn/〈v〉 ∼ τv, which

leads to τn ∼ τv as observed in experiments (Fig. 2F).

For low-concentration bacterial suspensions, λn is set by the size of individ-

ual bacteria lb (Fig. 2E), whereas τv is given by the characteristic time scale

of bacterial swimming, τv = τb ≡ lb/v0 (Fig. 2F). It is difficult to estimate the

average local velocity for low-concentration suspensions, as there is no general

alignment of bacterial orientation. Assuming an isotropic distribution of bac-

terial orientation at low concentrations, 〈v〉 would be zero if all bacteria have

the same swimming speed v0. Thus, the average velocity must arise from the

fluctuations of the swimming speed of individual bacteria around the mean,

i.e., 〈v〉 ∼ ∆v =
√
〈v2〉 − v2

0 , where ∆v is the standard deviation of bacte-

rial swimming speed. Given τn ≈ 10τb from experiments (Fig. 2F), we have
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〈v〉 ∼ ∆v ≈ 0.32v0 = 4.7 µm/s based on Eq. 5, agreeing well with the exper-

imental measurements ∆v = 3 µm/s. Thus, the variations of the swimming

speed of individual bacteria lead to a small but finite average local bacterial

velocity, which gives rise to the long density correlation time at small φ.

2 Density fluctuations

2.1 Pixel intensity and the number of bacteria

Figure 1D shows that, under the same illumination and imaging condition,

bacterial density and the average pixel intensity follow approximately a linear

relation, which can be expressed as

n = a+ bI. (6)

Here, n is the average number density of bacterial suspensions, I is the average

pixel intensity, a and b are constants at the fixed illumination and imaging

condition. Note that the volume fraction of bacterial suspensions φ = nVb with

Vb ≈ 1 µm3 the average volume of a single bacterium. The number of bacteria

in a given subsystem of side length l and thickness d can be calculated as

N = l2dn = l2d(a+ bI), (7)

where d ≈ 6 µm is the depth of field of microscopy, which is fixed in our

experiments. Thus, the number of bacteria in the subsystem N is proportional

to nl2. Taking the standard deviation of both sides of Eq. 7, we obtain

∆N = d|b|(l2∆I), (8)

where ∆N is the standard deviation of the bacterial number in the subsystem

over time and ∆I is the standard deviation of the average pixel intensity of the

subsystem over time. Since d|b| is a constant independent of subsystem sizes and

bacterial density, ∆N is linearly proportional to l2∆I. Because any constant in

front of ∆N would not affect either the scaling relation or the relative magnitude

of density fluctuations at different n (or φ), we simply take l2∆I as ∆N in our

study.

Note that the volume of the subsystem under consideration is V = l2d.

Hence, even at the smallest length l = lb/3 = 1 µm chosen in our density
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Figure S1: Calculation of the standard deviation of the average pixel inten-
sity, ∆I, at different length scales. Density fluctuations are quantified by the
standard deviation of the average pixel intensity over time in subsystems of in-
creasing sizes, indicated by the sequences of red squares. Results from twenty
different subsystems of the same size evenly distributed in the field of view are
then averaged to yield ∆I for the given subsystem size.

fluctuation analysis (Fig. 3A), V = 6 µm3 is still sufficiently large to hold up

to six bacteria within the subsystem. Here, lb ≈ 3 µm is the length of bacterial

body. Hence, even at the smallest length scale of our analysis, local correlation

between multiple bacteria can still exist within one subsystem, which is indeed

detected in our experiments at small l.

2.2 Density fluctuations at different length scales

Based on the linear relation between ∆N and ∆I, we calculate the density fluc-

tuations at different length scales. We first crop square-shape subsystems of

increasing sizes, as shown in Fig. S1. For each subsystem size l, the standard

deviation of the average pixel intensity of the subsystem is calculated over 50

frames (1.67 s or 8.35τb), which is longer than the saturated density correlation

time of 4τb = 0.8 s (Fig. 2F). To improve statistics, we choose 20 subsystems

of the same size evenly distributed in the field of view and obtain a spatial

average of the temporal standard deviation of the average pixel intensity ∆I
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(Fig. S1). This averaged ∆I is then multiplied by l2 to give the number density

fluctuations ∆N at the length scale l. Note that a second method has also

been proposed for calculating number fluctuations, where the standard devia-

tion of particle numbers is computed first spatially over different locations in

a single time frame and is then averaged over time of different frames.11 Al-

though the two methods lead to the same results when spatial and temporal

correlations are small compared with the system size and experiment duration,

the second method is subject to potential systematic errors in our study due to

time-independent non-uniform light illumination and intrinsic stationary den-

sity variations in non-motile suspensions at t = 0 in the kinetic measurements.

Using the first method, any stable non-uniform light illumination or stationary

non-uniform density variations would result in zero temporal standard devia-

tions of I and, therefore, would not affect our measurements of true density

fluctuations of motile bacterial suspensions.

2.3 Normalization of the density fluctuations of bacterial

suspensions of different volume fractions

Practically, to optimize image qualities, we adjust the exposure time of imaging

for suspensions of different φ. Exposure times affect the proportional constant

d|b| in Eq. 8, which introduces a φ-dependent linear constant. Although d|b|(φ)

does not affect the scaling exponent of density fluctuations α, it modifies the

relative magnitude of ∆N at different φ. In order to compare the magnitude

of density fluctuations at different φ, we further calibrate and normalize ∆I for

different φ. Specifically, using as the calibration, we take videos of bacterial

suspensions at different φ under the exact same imaging condition with fixed

illumination light intensity, condenser position, optical filters and all the camera

settings such as the exposure time and the dynamic range. The calibration

results are shown in Fig. S2, where ∆N ∼ l2∆I at different φ collapse at

small length scales. The calibration results show that we can normalize l2∆I of

different exposure times by its value at a fixed small length scale. We choose

the small scale at l = 0.3lb in our study. Since l2∆I at different φ shows

the same slope at small l, choosing any other small lengths between 0.1lb and

0.5lb would lead to quantitatively the same results. The normalized density

fluctuations show not only the correct scaling exponents but also the correct

relative magnitudes at different φ.
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Figure S2: Calibration of the standard deviation of bacterial number ∆N ∼
l2∆I at different volume fractions φ. ∆N versus the dimensionless subsystem
size l̃2 = l2/l2b for bacterial suspensions at different φ. The images are taking
under the same illumination with the same imaging condition.

2.4 Density fluctuations in the transient state

Density fluctuations in the transient state towards active turbulence is calcu-

lated using the same method as that in the steady state. Specifically, the pro-

cedure described above is applied at time t over a time interval ∆t during the

transition towards active turbulence. We choose ∆t = 1.7 s (50 frames), which

is longer than the density correlation time (4τb = 0.8 s) but is significantly

smaller than the time of the entire transition (∼ 60 s or 1800 frames) for a good

temporal resolution.

3 Density-flow correlations

3.1 Correlation between local density fluctuations and ki-

netic energy

To calculate local temporal density fluctuations, we need to approximate instan-

taneous intensity variations. On the one hand, the time interval for calculating

the intensity difference between two frames needs to be smaller than the density
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correlation time (4τb = 0.8 s) in order to satisfy the instantaneous approxima-

tion. On the other hand, the time interval should be sufficiently long to suppress

the influence of random fluctuations of image intensities in adjacent frames. In

our study, we choose 0.3 s (10 frames) for the local density fluctuation calcula-

tion. We do not expect the results to be much different when varying the time

interval from 0.17 s to 0.6 s.

To calculate the local density variations at the length scale of l = 2.75lb

and time t, we take 10 consecutive frames following the frame at t. All the

10 frames are first coarse-grained by averaging the intensity of pixels in square

windows of size 2.75lb × 2.75lb into single coarse-grained pixels (Fig. S3B). We

then take the temporal standard deviation of the coarse-grained pixel intensity

over the 10 frames at different positions to obtain a field of density fluctuations

at t, ∆n(r, t), as shown in Fig. S3D. The same approach has also been used to

calculate the field of instantaneous density fluctuations in the transient state

shown in Fig. 7A.

Independently, the PIV algorithm is also applied on the original images of the

first two frames to obtain the velocity field at time t, v(r, t) (Fig. S3C). Since the

step size of the PIV analysis is also at ∆x = 2.75lb (Materials and Methods), the

velocity field has the same dimensions as the coarse-grained density fluctuation

field obtained above. The local kinetic energy can then be calculated as E(r, t) =

|v(r, t)|2/2 (Fig. S3E). Finally, the normalized correlation between ∆n(r, t) and

E(r, t) is computed as

C1 =
〈(∆n−∆n)(E − E)〉

σ∆nσE
, (9)

where Ā indicates the spatial average of variable A at a fixed time, σA indicates

the standard deviation of A, and 〈A〉 denotes the average of A over all the

positions and times (total 1000 frames). The correlation quantifies the spatial

similarity between ∆n and E, which ranges between −1 to 1.

3.2 Correlation between local density and the divergence

of bacterial flux

Saintillan and Shelley showed numerically an anti-correlation between the local

bacterial density n and the divergence of the relative bacterial flux ∇ · (nv̄0d)

in 2D suspensions.47 Note that we use a different notation, where v̄0 is the local

average bacterial swimming speed and d is the unit vector indicating the local
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average swimming direction of bacteria. nv̄0d gives the relative bacterial flux

with respect to the local background fluid flow u. Experimentally, however,

it is difficult to measure the relative motion of bacteria with respect to the

background fluid flow. Instead, the PIV analyses yield the absolute bacterial

flux with respect to the fixed lab frame nv, where v = v̄0d + u. We calculate

the correlation between the local bacterial density n and the divergence of the

absolute bacterial flux ∇ · (nv) of 3D bacterial suspensions in our experiments,

C2 =
〈(n− n)[∇ · (nv)−∇ · (nv)]〉

σnσ∇·(nv)
, (10)

where again Ā indicates the spatial average of variable A at a fixed time, σA

indicates the standard deviation of A, and 〈A〉 denotes the average of A over

all the positions and times (total 1000 frames). Note that the local bacterial

density n is proportional to the local average light intensity as the size of the

local subsystem is fixed at l = 2.75lb.

3.3 Correlation between local density and kinetic energy

Finally, instead of the correlation between the local density fluctuations and

kinetic energy, we also analyze the correlation between the local density n and

kinetic energy E, which is defined as

C3 =
〈(n− n)(E − E)〉

σnσE
, (11)

where Ā indicates the spatial average of variable A at a fixed time, σA indicates

the standard deviation of A, and 〈A〉 denotes the average of A over all the

positions and times (total 1000 frames). The local kinetic energy is given as

E(r, t) = |v(r, t)|2/2. The local bacterial density n is proportional to the local

average light intensity as the size of the local subsystem is fixed at l = 2.75lb.

4 Supplementary video captions

Supplementary Video 1: Steady-state bacterial turbulence. The time length of

the video is 60 s in real time. The video plays at 4 times of real-time speed.

Field of view: 420 µm by 360 µm. Bacterial volume fraction: 6.4%.

Supplementary Video 2: The onset of active turbulence in bacterial suspen-

sions. The time length of the video is 96 s in real time. The video plays at 4
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times of real-time speed. Field of view: 420 µm by 360 µm. Bacterial volume

fraction: 6.4%. Yellow arrows indicates the velocity of the flow field. t = 0

corresponds to the time when the light is turned on.
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Figure S3: Schematic showing the procedure to calculate the correlation be-
tween local density fluctuations and kinetic energy. (A) The raw image of a
bacterial suspension at a given time t. (B) The coarse-grained image with a
pixel size of l = 2.75lb. (C) The velocity field from PIV. (D) The field of local
density fluctuations, obtained by calculating the standard deviation of the in-
tensity of coarsen-grained pixels shown in (B) over a short time interval. (E)
The field of local kinetic energy, obtained by calculating E = v2/2 from the
velocity field shown in (C).
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