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S1. Reaction rate constants 
 The rate constants for the rupture and formation of labile bonds between the cryptic sites, 

rk  and fk , respectively, are calculated as in our previous study.1,2 When a subchain encompassing 
a closed loop is stretched, the force acting on the labile bond connecting the two cryptic sites 
increases and hence, facilitates bond rupture. We utilize the Bell model3 to calculate the rupture 
rate constant as a function of the distance between the chain ends, R : 
 (0)( ) exp[ ( ) / ]r r R n Bk R k F R k Tγ=     (S1.1) 

Here, (0)
rk  is the rate of rupture at zero force, and ( )nF R  is the force applied to the ends of a 

polymer chain, which contains n  Kuhn segments. Note that n  is the number of segments in the 
part of the network subchain that does not form a loop. Finally, Rγ  characterizes the sensitivity of 
the bond to the applied force; Bk  and T  are the respective Boltzmann’s constant and temperature.  
 The force ( )nF R  is calculated according to the freely-jointed chain model (FJC): 4 

 1 1( ) [ ( ) ]B
n

k TF R R nb
b

− −= L    , (S1.2) 

where 
 1( ) coth( )x x x−= −L  (S1.3) 
is the Langevin function, and b  is the length of the Kuhn segment. Through eq. (S1.2), we take 
into account the finite extensibility of a polymer chain. The force build up due to the finite 
extensibility has a strong effect on the bond rupture rate. 
 The rate constant for forming a labile bond between the cryptic sites, ( )fk R , depends on 
the chain end-to-end distance R . To form a bond, the reactive units in the unfolded chain of n l+  
segments must first come into contact, and the probability of contact, cP , depends on R . When in 

contact, the reactive units form a labile bond with the rate constant (0)
fk , and hence 

(0)( ) ( )f c fk R P R k= . As in previous studies,2,5–9 it is assumed that (0)
fk  does not depend on the 

force acting on the bond. The probability of contact, ( )cP R , is calculated using the conformational 
statistics of the polymer chain: ( ) ( ) (0) ( )c n l n lP R P R P P R+= , where ( )nP R  is the probability 
distribution function for finding the ends of a chain of n  segments at distance R apart. For the 
FJC model, this distribution function is 4 
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where 1( )x R nb −= . Note that through the equations for ( )cP R , the rate of chain folding depends 
on both the total length of the chain, n l+ , and the length of the loop, l . 
 It is convenient to re-write the dimensionless variable 1( )x R nb −=  in eqs. (S1.3) and 
(S1.4) in terms of the chain extension λ . As mentioned above, we assume that all the loops are 
folded when the gel is in the undeformed state. Given that b is the length of one Kuhn segment, 
and there are l segments in one closed loop, the average end-to-end distance of an unperturbed 
chain is thus 0R b n= . The chain extension, λ , can be calculated as 0R Rλ= , where R  is the 

end-to-end distance of a deformed chain containing a closed loop and hence, 1/2 x nλ −=  in eqs. 
(S1.3) and (S1.4). The rate constants of bond rupture and formation can now be expressed as 
functions of λ  instead of R , i.e., ( )rk λ  and ( )fk λ , respectively. 
 The rate constant for complex formation in eq. (2) in the main text, complK , is proportional 
to the probability that the two reacting monomeric units will meet. We employ the scaling approach 
by Ito, et al.,10 to account for the restrictions imposed by the polymer network on the binding of 
the dangling chains to the exposed cryptic sites. We obtain the following equation for the 
complexation rate constant as a function of the volume fraction of polymer φ : 

 4/3 1/3 2/3
0 0( ) exp[ ( / ) ( ) ]complK K a b n m lφ φ− −= − + +  (S1.5) 

 The rate constant for the unbinding of a dangling chain in eq. (2), uBK , is calculated similar 
to the rate constant of unfolding, eq. (S1.1), i.e., uBK  is a function of the chain extension  λ  

 (0)( ) exp[ ( ) / ]uB uB m BuBK k F k Tλ γ λ=    . (S1.6) 

Here, 1 1/2( ) [ ]B
m

k TF m
b

λ λ− −= L  is the force acting on a chain consisting of m  segments under 

an extension  λ  (eq. (S1.2)), and (0)
uBk  and uBγ  are the respective reaction rate constant at zero 

force and the force sensitivity parameter. Finally, 0K is the rate constant of complex formation 
and 0a is the size of a monomer. 
 
S2.  Free energy density of the gel system 
 The energy density of a deformed material, 1 3( , )u I I , can be specified as a function of the 

first  1I  and third 3I  invariants of the Finger strain tensor, B̂ .  

 The total energy, 1
0 1 3 0( , )tot BU v k T u I I dV−= ∫ , is determined by integrating over the 

volume of the unstrained material, 0V . Here, 3
0 0v a=  is the volume of a monomeric unit and the 

factor 1
0 Bv k T−  is the unit of stress in our model.  

 In our model, there are three different contributions to the energy density: 
1. el 1 3( , )u I I  describes the elastic energy of the permanently cross-linked network composed of 

FJC chains2,11 within the approximation of affine deformations; 
2. FH 3( )u I  describes the polymer-solvent interaction according to the Flory-Huggins model; 
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3. el ( )u t∗  describes the contribution of the temporary cross-links to the elastic energy of the 
network. 

 The dimensionless energy density of the system is thus composed of: 
 1 3 el 1 3 FH 3 el( , ) ( , ) ( ) ( )u I I u I I u I u t∗= + +   (S2.1) 
The first term on the right-hand side (r.h.s.) of eq. (11), el 1 3( , )u I I , is given by 

 
[ ]

20 0
el 1 3 1 1 1

1/20 0
0 0 3

( , ) (1 ) ( , ) ( , (1 / ) ) ( , )
2

( ) ( ) ln
4

U U
c vu I I p I n p I n l n I n l

c v n n l Iζ ζ

 = − Ψ + Ψ + +Ψ + 

− + +
    (S2.2) 

Here, 0c  is the total concentration of subchains in the as-prepared gel.  
The function 1 el( , )I nΨ  is defined as 

 1/21
1 el el el

el
( , ) ( )

3
II n n n
n

ψ ψ −  
Ψ = −      

 (S2.3) 

and gives the contribution to the elastic energy from a stretched FJC chain consisting of eln  
elastically active segments. In eq. (S2.3), the function ( )xψ  in the antiderivative of the inverse 
Langevin function  
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    .  

The function ( )xζ  is related to the inverse Langevin function and is defined as 
 1 1( ) (3 ) ( )x x xζ − −= L     . 

Finally, 1/2
0 ( ) ( )n nζ ζ −=  as is mentioned in  the main text after eq. (7). 

 We assume that all the subchains between cross-links have n l+  Kuhn segments, and the 
loops are folded in the un-deformed gel. Also, we assume that the amount of the subchains that 
contain loops is equal to the amount that contain dangling chains. The first term on the r.h.s. of eq. 
(S2.2) describes the entropic elasticity of the stretched polymer chains.  There are three 
contributions to the total entropic elasticity:  

1. fraction of  subchains with folded loops for which eln n= ;  

2. fraction of subchains having unfolded loops for which 2
el (1 / )n n l n= + . The number of 

elastically active segments for the unfolded configuration is taken to be equal to the effective 
number 2

el (1 / )n n l n= +  because in the calculations of the rate of folding, the subchains with 
folded and unfolded loops are considered to have the same end-to-end distances.  

3. contribution of the rest of the subchains that contain dangling chains for which eln n l= + .  
The second term on the r.h.s of eq. (S2.2) accounts for the contribution of an ideal gas of 

permanent cross-link points. The second term on the r.h.s. of eq. (S2.1) is 
 [ ]1/2

FH 3 3( ) (1 ) ln(1 ) ( , ) (1 )FHu I I Tφ φ χ φ φ φ= − − + −     (S2.4) 
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In eq. (S2.4), ( , )FH Tχ φ  is the Flory-Huggins interaction parameter, and φ  is the volume fraction 

of polymer. Note that φ  depends on 3I  as 1/2
0 3Iφ φ −= , where 0φ  is the volume fraction of polymer 

in the un-deformed state, and 
 The dangling chains contribute to the elastic energy only when they form temporary cross-
links by attaching to the exposed cryptic bonds. The last term on the r.h.s. of eq. (S2.1) describes 
the contribution to the energy density from the temporary cross-links: 

* 1/20
el 0 0 1 3

* 1/20
0 0 1 3

0

( )( ) ( ,0) ( ( ,0), ) ln( ( ,0))
2

( )( , ) ( ( , ), ) ln( ( , ))
2

t

mu t c v t I t m I t

mc v t I t m I t d

ζ
ξ

ζξ τ τ τ τ
τ

∗  = Ψ −  

∂  + Ψ − ∂  ∫
    (S2.5) 

Equation (S2.5) is a generalization of eq. (S2.2) to the case of transient networks. Here, 
deformations at a given time are affected by deformations that occurred earlier in the sample.12,13 
Specifically, the stress tensor within a transient network depends on the relative strain tensor 
ˆ ( , )t τb , which characterizes deformations in the network at time t relative to the (deformed) state 

of the network at τ . Correspondingly, el ( )u t∗  depends on the invariants of the relative strain tensor 

1( , )I t τ  and 3( , )I t τ .13 It is worth noting that ˆ ˆ( ,0) ( )t t=b B .  
 As described in the main text, the function ( , )tξ τ  on the r.h.s. of eq. (S2.5) determines the 
number of cross-links that were created before the time τ  and still exist at time t τ≥ . The time 
derivative ( , ) /tξ τ τ∂ ∂ determines the number of cross-links that exist at time t  and were created 
during the period of time from τ  to dτ τ+ . The detailed expressions of ( , )tξ τ  and ( , ) /tξ τ τ∂ ∂  
are provided in the main text (Eqs. 5 and 6). 
 
S3. Computational model (gLSM) 
 The 3D gel lattice spring model (gLSM) computational technique1,14–16 allows us to 
simulate the dynamic behavior of the gels along with the kinetics of unfolding and binding of loops 
and dangling chains with reactive ends. The gLSM is a finite element approximation, and utilizes 
the combination of finite element and finite difference approaches to numerically solve the 
elastodynamic equations characterizing the behavior of chemo-responsive polymer gels. The 
gLSM has been utilized in modeling thermo-responsive gels, and have yielded good agreements 
with corresponding experimental results. For instance, the gLSM was initially developed to 
simulate the dynamic behavior of self-oscillating polymer gels undergoing the Belousov-
Zhabotinsky (BZ) reaction 14–18 and to predict the response of these BZ gels to an applied  
force.19–22 

The gLSM was further modified to include chromophores that undergo a light-induced 
isomerization reaction,23–25 and used for simulations of the dynamics of such photo-responsive 
gels. Additionally, we modeled and provided optimization guidelines of the self-regulating 
behavior of chemically-reactive microposts embedded in a thermo-responsive gel.26 Recently, we 
augmented our 3D gLSM to take into account the finite extensibility of the chains within gels 
containing loops.1 In this paper, we utilize  the  model that accounted for the dynamic (temporary) 
binding of dangling chains.2 
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The gLSM is based on the two-fluid, polymer and solvent, model for polymer  
networks.27–29 The dynamics of the polymer network is assumed to be purely relaxational, so that 
the forces acting on the swollen, deformed gel are balanced by the frictional drag due to the motion 
of the solvent. It is also assumed that the polymer-solvent inter-diffusion is the sole contribution 
to the gel dynamics. Hence, the velocity of the polymer, ( )pv , can be calculated as 15 
 ( ) 3/2

0 0 ˆ( ) (1 )p φ φ φ−= Λ − ⋅v σ∇     (S3.1) 
where 0Λ  is the kinetic coefficient, which is inversely proportional to the polymer-solvent friction 
coefficient 0η . In the simulations, we choose some 0l  and 0t  for the respective units of length 
and time, and stress is measured in the units of 0 0/Bk T vσ = , where 0v  is the volume of a 
monomeric unit within a polymer chain. The dimensionless kinetic coefficient 0Λ  is calculated as 

2 1 1
0 0 0 0 0( )Bk T v l tη − −Λ = .15 

 Within the gLSM framework, a 3D gel sample is represented by a set of linear hexahedral 
elements30,31 and consists of  ( 1) ( 1) ( 1)x y zL L L− × − × −  identical cubic elements. Here, iL  is the 
number of nodes in the i -direction, , ,i x y z= . Initially, the sample is undeformed and each 
element is characterized by the same volume fraction 0φ  and cross-link density 0c . (Note that the 
cross-link density is equal to the concentration of elastically active subchains in the network.) 
Upon deformation, the elements move together with the polymer network so that the amount of 
polymer and number of permanent cross-links within each hexahedral element remain equal to 
their initial values. Correspondingly, the volume fraction of polymer in the element ( , , )i j k≡m  

is determined as 3
0( ) / ( )Vφ φ= ∆m m , where ∆  and ( )V m  are the undeformed element size and 

volume of the deformed element, respectively.  
 The gel dynamics is described through the motion of the nodes of the elements caused by 
forces acting on these nodes. For the gel model considered here, the energy density is 
dimensionless and is composed of three terms: 
 1 3 el 1 3 FH 3 el( , ) ( , ) ( ) ( )u I I u I I u I u t∗= + +   (S3.2) 

Here, the first term on the right-hand side (r.h.s.) of eq. (S3.2), el 1 3( , )u I I , describes the elastic 
energy of the crosslinked network, FH 3( )u I describes the polymer-solvent interaction according 

to the Flory-Huggins model, and el ( )u t∗ is the elastic energy contribution from the temporary cross-
links. 
 We use the finite element approximation (FEA) to determine the element energy density 

( )u m  from  1 3( , )u I I   in eq. (S3.2).16 The total energy of the gel is then 

 3 ( )totU u= ∆ ∑m m       (S3.3) 
where the contribution from the element m , ( )u m , depends only on the coordinates of the nodes 
of this element denoted as ( )n mx , 1, 2,...,8n = . (Note that ( )u m  is the gel energy per unit volume 
of the undeformed element.) Then, the force acting on each node is given by the equation 

 ( )
( )
tot

n
n

U∂
= −

∂
F m

mx
   (S3.4) 
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The right hand side of the above equation contains contributions from all elements adjacent to a 
given node (in order to consider all the elements belonging to a common node). Finally, we 
consider over-damped dynamics and thus the velocity of the node is proportional to the force and 
is given by 

 ( ) ( ) ( )n
n n

d M
dt

=
m m F mx     (S3.5) 

where ( )nM m  is the mobility of the node proportional to the kinetic coefficient 0Λ  mentioned 
above. 
 The contributions to ( )u m  and ( )nF m  due to the elastic energy of permanent network and 
the polymer solvent interactions, i.e., the first three terms on the r.h.s. of eq. (S3.2), and the 
mobility ( )nM m  are calculated as described in detail in ref.2  Below, we focus solely on applying 

the FEA to the last term on the r.h.s. of eq. (S3.2), el ( )u t∗ , that then gives the contribution of the 
temporary cross-links to the nodal forces. 
 Equation for el ( )u t∗  is given as follows: 

 

1/20 0
0 3

1/2 1/20 0 0 0
1 1

0

( ) ( ) ( ) ln ( )
2

( ,0) ( ( ) ) ( ) ( , ) ( ( , ) ) ( , )
2 2

el B

t

c vu t m p t I t

c v c vt t m I t t t m I t d

ζ

ξξ ζ λ τ ζ λ τ τ τ
τ

∗

− −

= −

∂
+ +

∂∫
 (S3.6) 

where we omit the terms, which do not contribute to the stress-strain relationship, eq. (10) in the 
main text. It is seen that the first and second terms on the r.h.s. of eq. (S3.6) depend on the first, 

1( )I t , and third, 3( )I t , invariants of the Finger strain tensor ˆ ( )tB . Therefore, application of the 
FEA to the latter two terms is the same as described in ref.16 Hence, the main step in the gLSM 
formulation of el ( )u t∗  is the FEA of the last term on the r.h.s. of eq. (S3.6) that depends on the 

invariant 1( , )I t τ  of the relative Finger strain tensor ˆ ( , )t τb . We start with the following 
decomposition of the relative strain tensor: 
 1 Tˆˆ ˆ ˆ( , ) ( ) ( ) ( )t t tτ τ−= ⋅ ⋅b F C F     (S3.7) 
Here, ˆ ( )tF  is the deformation-gradient tensor associated with the deformation ( , )t→X x X  

 ( , )ˆ[ ( )] , , 1, 2,3i
ij

j

dx tt i j
dX

= =F X     

and ˆ ( )tC  is the left Cauchy-Green strain tensor (the Cauchy-Green strain tensor) 

 Tˆ ˆ ˆ( ) ( ) ( )t t t= ⋅C F F     (S3.8) 
The superscript “T” stands for the transposition operation. The first relative strain invariant is 
defined as 1 ˆ( , ) tr ( , )I t tτ τ= b , so it can be equivalently written in the following way 

 1
1 ˆ ˆ( , )) tr[ ( ) ( )]I t tτ τ−= ⋅C C     (S3.9) 

The components of the Cauchy-Green strain tensor can be calculated as  
 ˆ[ ( )] ( ) ( )ij i jt t t= ⋅C g g     (S3.10) 
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where ( )i tg  are the base vectors 

 
( , )( ) , 1, 2,3i

i

tt i
X

∂
= =

∂
g x X

 (S3.11) 

The matrix elements of 1ˆ −C  can be calculated analytically as 

 1
2

1 2 3

( ) ( )ˆ[ ]
( ( ))
k l m n

ij ikl jmnε ε− × ×
=

×

⋅
⋅

g g g gC
g g g

    (S3.12) 

In the above equation, ijkε  is the Levi-Civita symbol, so the sets of indexes ( , , )i k l  and ( , , )j m n  
are the cyclic permutations of (1, 2,3) . No summation over the repeated indexes is performed in 
eq. (S3.12). 

 
 Fig. S1 Schematic of the 3D hexahedral element. The local coordinate system 

1 2 3( , , )η η η=η is placed in the center of element. The labels 1, 2, ,8  indicate the local node 
numbering within the element. 
 
 Within each linear hexahedral element, the three functions, which specify the deformation 

( , )tx X , are approximated by a tri-linear expansion. Then, the reference local coordinate system 

1 2 3( , , )η η η=η , where 1 1iη− ≤ ≤ , 1, 2,3i = ,  is introduced within each element (see Fig. S1).30,31 
The coordinates within the element m  in this reference coordinate system can be calculated 
through the values of the nodal coordinates, ( , )n tmx , and a set of “shape functions” 

1 2 3( ) ( , , )n nN N η η η≡η , 1 8n≤ ≤ , as explained in ref.16 
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1
( ) ( , ) ( )n n

n
t t N

=
= ∑ mx x η     (S3.13) 

Within the above finite element approximation, the base vectors, eq. (S3.11), are calculated as 
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1

1
( , ) 2 ( , ) n

i n
in

Nt t
η

−

=

∂
= ∆

∂∑g m mx     (S3.14) 

Substituting eq. (S3.14) into eqs. (S3.9),(S3.10) and (S3.12) yields the following equation for the 
relative strain invariant 1( , )I t τ  in the element m  

 
8

2
1

, 1
( , ) ( , )( ( , ) ( , ))nm n m

n m
I t t tτ τ−

=
= ∆ Γ ⋅∑ m m mx x    (S3.15) 

The above equation exhibits two important features, namely, the pairwise contribution of the 
nodes, and factorization of the t - and τ -dependences in each term. The τ -dependent matrix 
elements ( )nm τΓ  in the quadratic form, eq. (S3.15), are determined according to eq. (S3.9) as 



8 

 
3

1

, 1

ˆ( ) 4 [ ( )] n m
nm ij

j ii j

N N
τ τ

η η
−

=

∂ ∂
Γ =

∂ ∂∑ C  (S3.16) 

In the above equation, we omitted the dependence of nmΓ  on the element number m  for the sake 
of simplicity. Further, the matrix elements ( )nm τΓ exhibit the following properties: 

 nm mnΓ = Γ ,
8

1
0nm

n=
Γ =∑   (S3.17) 

Within each element m , the values ( , )nm τΓ m  depend on the nodal coordinates at the moment of 
time τ , ( , )n τmx , and on the reference element coordinates η .  
 Substituting eqs. (S3.15) and (S3.16) into the last term on the r.h.s. of eq. (S3.6) and 
integrating it over the volume of undeformed element m  gives the following result denoted as 

( , )u t∗ m : 

 
8

2 0 0

, 1
( , ) ( , )( ( , ) ( , ))

2 nk n k
n k

c vu t t t tθ∗ −

=
= ∆ ⋅∑m m m mx x    , (S3.18) 

where 

 1/2

0
( , ) ( , ) ( ( , ) ) ( , )

t

nk nkt t t m dξθ τ ζ λ τ ρ τ τ
τ

−∂
=

∂∫m m    , (S3.19) 

and ( , ) /tξ τ τ∂ ∂  is defined by eq. (6).The values ( , )nkρ τm  on the r.h.s. of eq. (S3.19) are obtained 
by integration of the matrix elements ( )nm tΓ  defined by eq. (S3.16) over the reference element 
volume: 

 1( , ) ( , , )
8nm nmt t dρ = Γ∫m m ξη     (S3.20) 

Note that the above equation explicitly shows the dependence of nmΓ  on the reference element 
coordinates η . The contribution of eq. (S3.17) to the force acting on the node n of the element 
m  from other nodes within the same element is 

 3
0 0

( , )( , ) ( , )( ( , ) ( , ))
( , )n nk n k

n k n

u tt c v t t t
t

θ
∗

∗

≠

∂
≡ −∆ = ∆ −

∂ ∑mF m m m m
m

x x
x

    (S3.21) 

where we utilized the properties of the nmΓ  given by eq. (S3.17). Equation (S3.21) shows that 
within the gLSM approach, the contribution of the temporary cross-links to the nodal forces is 
described by a system of linear springs with the time-dependent spring stiffness ( , )nk tθ m . 
 Equation (S3.21) is a formal solution of the problem because evaluating ( , )nk tθ m  requires 
further simplifications. First of all, the integration in eq. (S3.20) cannot be performed analytically. 
The integral can be calculated approximately through the Gaussian quadrature. We use the 
simplest Gaussian quadrature, which corresponds to approximating the integrand function by its 
value at the element center, (0,0,0)= ≡ 0η , to obtain 
 ( , ) ( , , )nk nkρ τ τ≈ Γm m 0      (S3.22) 
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Under the above approximation, the matrix elements nkρ exhibit the following symmetry 
properties additional to that in eq. (S3.17):  
 1 7n nρ ρ= − , 2 8n nρ ρ= − , 3 5n nρ ρ= − , 4 6n nρ ρ= −     
at any 1 8n≤ ≤ . Since the matrix elements nkθ  exhibit the same symmetry properties as nkρ , the 

nodal force ( , )n t∗F m  under the approximation in eq. (S3.22) can be conveniently written in the 
following form: 

 
4

0 0
1

( , ) ( , ) ( , ), 1 8 ,n nk k
k

t c v t t nθ∗

=
= ∆ ≤ ≤∑F m m d m  (S3.23) 

where kd , 1 4k≤ ≤ , are the vectors defining the main diagonals of the element:  
 1 7 1= −d x x , 2 8 2= −d x x , 3 5 3= −d x x , 4 6 4= −d x x     (S3.24) 

Evaluating the matrix 1ˆ[ ]ij
−C , eq. (S3.12), is also simplified because at = 0η , the base vectors, 

eq. (S3.11), are calculated through the main diagonals, eq. (S3.24), as  
 1

1 1 2 3 4(4 ) ( )−= ∆ + − −g d d d d    , 

 1
2 1 2 3 4(4 ) ( )−= ∆ + + +g d d d d    , 

 1
3 1 2 3 4(4 ) ( )−= ∆ − − +g d d d d    . 

In addition, using the approximation in eq. (S3.22) reduces the number of linearly independent 
values of nkθ  in the equation for the force, eq. (S3.23), down to 6. 
 Finally, evaluation of the spring stiffness matrix elements ( , )nk tθ m , eq. (S3.19), is 
performed through the numerical integration over τ , and ( , ) /tξ τ τ∂ ∂  is given by eq. (6) in the 
main text. For this purpose, the 3-point Simpson’s integration rule is used. Note this integration 
requires the values of the deformation history from τ → −∞  to time t . Numerically, the 
numerical integration might become computationally expensive, so that the array size is limited 
to certain value. We choose the array size to assure that the stored history of deformation is 
enough to attain convergence to the steady state limits. In our calculations, the array size of 5000 
was found sufficient for convergence to the steady state values. At every current time step, we 
applied a first-in last-out array replacement to remove the past deformation and move in the 
present time deformation history into the stored arrays.  
 We focus on the state of equilibrium swelling of a gel that contains both cryptic bonds 
and dangling chains with reactive ends. To calculate the equilibrium shear and Young’s elastic 
moduli, we utilize the basic definitions of these moduli. Namely, each modulus is calculated as a 
corresponding stress to strain ratio in the limit of small deformations. The dimensionless kinetic 
coefficient is 0 100Λ = .16 In our gLSM simulations, the dimensionless units of time and length 
correspond to ∼1s and ∼ 40μm , respectively, for the given choice of parameters. We carried out 
the gLSM simulations using a single element sample. The time step used for the gLSM 
simulations is 0.001t∆ = . Figure 3 in the main text presents the results of the gLSM simulations. 

In order to obtain the storage and loss dynamic moduli, we performed the gLSM 
simulations of a sinusoidal shear deformation of a single element. In Fig. S2, we plot the dynamic 
shear modulus as a function of dimensionless frequency, ( )/ st

uBKω , at 15 CT = ° . The points 
represent the values of  the dynamic modulus obtained from the gLSM simulation. The lines 
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represent the values of dynamic shear modulus obtained from the linearized theory (see eq. S4.14). 
The shear deformation is volume preserving. The exact match between the two results corroborate 
that for small deformation, the linearized approximation yields proper result. 

 
 Fig. S2 The dynamic storage shear modulus G′  as a function of dimensionless frequency 

( )/ st
uBKω  at 15 CT = °  for the System IV normalized with the value of refG . The solid line shows 

the values calculated using eq. (S4.14). The solid disks represent the modulus values obtained 
through the gLSM simulations. 
 
S4. Calculations of elastic moduli 

The stress tensor σ̂  for the gel system with loops and dangling chains with reactive ends 
is given in main text in eqs. (7)-(10). The steady state of the gel is obtained when ˆ 0=σ  . 

Without relaxation, linearization of the stress tensor results in 
ˆˆ ˆ ˆ( ) tr[ ( )] 2 ( )t t tδ λ µ= +σ ε I ε  (S4.1) 

where λ  and µ  are the first and second Lame parameters, respectively, and Î  is the unit tensor. 
The shear G  and bulk K  moduli are related to the Lame parameters as 
 G µ=  (S4.2) 

 2
3

K λ µ= +  (S4.3) 

Young’s modulus E  is calculated as 

 9
3

KGE
K G

=
+

 (S4.4) 
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If relaxation takes place, the Lame parameters become the convolution kernels, and the 
stress-strain equation is conveniently formulated via the Fourier transform: 
 ˆˆ ˆ ˆtr( ) 2ω ω ω ω ωδ λ µ= +σ ε I ε  (S4.5) 

The Fourier transform is defined here as ( ) exp( )f f t i t dtω ω
+∞

−∞
= −∫ . The shear Gω  and bulk 

Kω  moduli are related to the Lame parameters as 
 Gω ωµ=  (S4.6) 

 2
3

Kω ω ωλ µ= +  (S4.7) 

Young’s modulus Eω  is calculated as 

 
9

3
K GE

K G
ω ω

ω
ω ω

=
+

 (S4.8) 

Dynamic shear moduli 
After linearization, the contributions to the stress tensor ( )ˆ ( )sh tδσ  that are linear in strain 

ε̂  are 

 
( )

( ) ( )( ) 0

( )( ) ( )
0 0

0

ˆ ˆ( ) (1 ) 2 ( )
2

ˆ ˆ2 ( ) ( ) e ( )
st

uB

st stsh st st st
U U

st

t
K tst stst

B uB

c nt p p t
n ln n l

c m p t K dτ

λ λ λ
δ ζ ζ ζ

λ

φ
ζ τ τ

φ
− −

−∞

     = − + + ×      + +      
 
 + −
  

∫

σ ε

ε ε

 (S4.9) 

The equilibrium shear modulus 0G comparing equations S4.9 with S4.1 yields 

 ( ) ( )0
0 (1 )

2
st stst st st

U U
st

c nG p p
n ln n l

λ λ λ
ζ ζ ζ

λ

     = − + +      + +      
 (S4.10) 

When relaxation is considered, the fourier transform of the above equation S4.9 yields  

 
( )

( )
0 ( )

/
ˆ ˆ2

1 /

st
sh uB

st
uB

i K
G G

i K
ω ω

ω
δ

ω

 
 = + ∆ ×
 + 

σ ε   (S4.11) 

and hence, the complex dynamic dynamic shear modulus Gω  is 

 
( )

0 ( )
/

1 /

st
uB

st
uB

i K
G G G

i K
ω

ω

ω
= + ∆

+
    (S4.12) 

Here, 

 ( )
0 0

0
( ) stst

BG c m pφ
ζ

φ
∆ =   (S4.13) 

The storage and loss shear moduli are: 

 
( ) 2

0 ( ) 2
( / )

( )
1 ( / )

st
uB

st
uB

K
G G G

K

ω
ω

ω
′ = + ∆

+
 (S4.14) 
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( )

( ) 2
/

( )
1 ( / )

st
uB

st
uB

K
G G

K

ω
ω

ω
′′ = ∆

+
 (S4.15) 

Using the values obtained from solving the gel systems at equilibrium into the shear modulus 
formula, we obtain the values of the modulus numerically for both the equilibrium scenario as 
well as for the frequency dependent values.  

Dynamic bulk moduli 
The spatially isotropic contributions to the stress tensor due to variations of volume are 

expressed as: 

 

( ) ˆˆ ˆ( ) tr[ ( )]
3

ˆ( ) ( )

v vol st vol
st

stst

vol vol
U B

U B stst

t t

p t p t
p p

σ λ σ
δ φ

φ λ

σ σ
δ δ

 ∂ ∂   = − +    ∂ ∂    
    ∂ ∂

+ +    ∂ ∂    

σ ε Ι

Ι

 (S4.16) 

Here, 

 

2
0

0

0 0 0 0 0
0 0

(1 )
2

( ) ( ) [ ( ) ( )]
2 4

st
vol U U

B FH

c np p
n ln n l

c m p c n n l

λ φ λ λ λσ ζ ζ ζ
φ

φ φζ π φ ζ ζ
φ φ

     
= − + +      + +      

 
+ − + + + 

 

 (S4.17) 

The partial derivatives of volσ  are calculated as follows: 

 vol FH
st FH

st st

σ πφ φ π
φ φ

∂   ∂
− = −   ∂ ∂   

 

 ( ) ( )0 (1 )
3 6

st stst vol st st st
U U

st

c nn np p
n l n l n ln n n l

λ σ λ λ λ
ζ ζ ζ

λ

  ∂      ′ ′ ′= − + +        ∂ + + + +        
 

 0
2

vol st st

U stst

c n
p n l n
σ λ λ

ζ ζ
λ

   ∂  = −      ∂ +       
 

 0 0
0

( )
2

vol st

B st
c m

p
σ φ

ζ
φ

 ∂
= ∂ 

 

Note that ( )/st vol stφ σ φ− ∂ ∂  is the osmotic compressibility. 
The volumetric stress is affected by unfolding and binding through the terms proportional 

to ( )Up tδ  and ( )Bp tδ , respectively, which, in turn, are linear functionals of ˆtr ( )tε . 
Linearization of the non-linear chemical kinetics equations for Up and Bp  

 2/ (1 ) (1 )U r U f B Udp dt k p k pπ= − − −  
1

0 0/ (1 )(1 )B compl U B B uB Bdp dt c K p p K pφ φ π−= − − −  

results in the following linear equations for Upδ  and Bpδ  
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ˆtr ( )UU UBU U U

BU BBB B B

p p Kd t
p p Kdt
δ δ δ
δ δ δ

Γ Γ      
+ =      Γ Γ      

ε  

Here, 
( ) (1 ) (1 )

( )
st U B B U

UU r
U U B

p p p pk
p p p
− + −

Γ =
−

 

( ) 12 st U
UB r

U B

pk
p p
−

Γ = −
−

 

( )st B
BU uB

U B

pK
p p

Γ = −
−

 

2
( )

(1 )( )
st U B

BB uB
B U B

p pK
p p p

−
Γ =

− −
 

( ) (1 ) log
3

st st r
U r U

f st

kK k p
k

λ
δ

λ

 ∂
= −   ∂ 

 

( ) log log
3

st
B B st c uBuB

stst
K K p K Kλδ φ

φ λ

  ∂ ∂ = − +   ∂ ∂    
 

For simplicity, the subscript “(st)” is omitted in ( )st
Up  and ( )st

Bp  in the above equations. The 
equilibrium bulk modulus K is obtained comparing equations S4.16 with S4.1 and S4.3. 

For the dynamic moduli, the equations for Upδ  and Bpδ  are solved in terms of the 
Fourier transforms: 

1ˆ ˆ ˆ( ) trU U

B B

p K
i

p K
ω

ω
ω

δ δ
ω

δ δ
−   

= +   
  

I Γ ε  

Finally, the complex dynamic bulk modulus Kω  is obtained in the following form: 

 

2

1

3

ˆ ˆ( )

2
3

volFH

st

Uvol vol

BU B stst

K

K
i

Kp p

G

ω

ω

σπ λφ
φ φ λ

δσ σ
ω

δ
−

 ∂ ∂
= +  ∂ ∂  

      ∂ ∂
+ +       ∂ ∂     

+

I Γ  (S4.18) 

 
S5. Finite shear and tensile deformations 

The stress tensor σ̂  for the gel system with loops and dangling chains with reactive ends 
is given in main text in Eqs. 7-10. Below, we derive equations describing the shear and tensile 
deformations of gel in the general case of finite deformations. The elastic moduli could be obtained 
using the derived equations if the deformations are small. 

 
 
 



14 

Simple shear deformations 
We consider a 3D cubic gel swollen to their equilibrium degree of swelling eqλ . A simple 

shear is defined by the evolution of the node positions of the gel sample as follows: 

 

( ) ( )

( )

( )

eq eq

eq

eq

x t X k t Y

y t Y

z t Z

λ λ

λ

λ

= +

=

=

  

Here, ( )k t  is the time-dependent deformation. In the case of oscillatory shear, 0( ) sin( )k t k tω= . 

Knowing the time-dependent coordinates, the Finger strain tensor, ˆ ( )tB , and the relative Finger 
strain tensor, ˆ ( , )t τb , are calculated as 

 

2

2
1 ( ) ( ) 0

ˆ ( ) ( ) 1 0
0 0 1

eq

k t k t
t k tλ

 +
 

=  
  
 

B  

 

21 [ ( ) ( )] ( ) ( ) 0
ˆ ( , ) ( ) ( ) 1 0

0 0 1

k t k k t k
t k t k

τ τ
τ τ

 + − −
 

= − 
  
 

b  

The average strain, 1( ) ( ) / 3t I tλ ≡ , is calculated from the above equations as 

2( ) 1 ( ) / 3eqt k tλ λ= + . Similarly, the average relative strain is 2( , ) 1 [ ( ) ( )] / 3t k t kλ τ τ= + − . 

Thus, the shear stress 12( )tσ  at a given value of ( )k t  can be calculated directly: 

 

0
12

0
3

( ) ( ) ( )( ) (1 ( )) ( ) ( )
2

( , )( , ) [ ( ) ( )]

U U
eq
t

eq

c t t n tt p t p t k t
n ln n l

c tt k t k d
m

λ λ λσ ζ ζ ζ
λ

ξ λ ττ ζ τ τ
τλ

∗

−∞

     
= − + +      + +      

 ∂
+ − ∂  

∫
 (S5.1) 

The time-dependent values ( )Up t  and ( , )tξ τ
τ
∂
∂

 are calculated as described in the main text. Note 

eq. (S5.1) depends on the history of deformation. To numerically calculate the stress value, an 
integration over history of deformation needs to be performed.  

Tensile deformations 
We consider a 3D cubic gel swollen to their equilibrium degree of swelling eqλ . Under a 

tensile deformation, the gel exhibits the degrees of swelling λ  and trλ  in the direction of 
deformation and normal to it, respectively. The Finger tensor and the relative tensor for this 
scenario is given by 
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2

2

2

( ) 0 0
ˆ ( ) 0 ( ) 0

0 0 ( )
tr

tr

t

t t

t

λ

λ

λ

 
 
 =
 
 
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B  

 

2

2

2

( ( ) / ( )) 0 0
ˆ ( , ) 0 ( ( ) / ( )) 0

0 0 ( ( ) / ( ))
tr tr

tr tr

t

t t

t

λ λ τ

τ λ λ τ

λ λ τ

 
 
 =
 
 
 

b  

Note that the amount of polymer in gel does not change with deformation, so 2 1
0 ( )trφ φ λ λ −= .  

The average strain, ( )tλ , and the average relative strain, ( , )tλ τ , are calculated through 
the first invariants of the corresponding tensors to obtain 

1/2 2 2( ) 3 ( ) 2 ( )trt t tλ λ λ−= +  
1/2 2 2( , ) 3 ( ( ) / ( )) 2( ( ) / ( ))tr trt t tλ τ λ λ τ λ λ τ−= + . 

The stress component in the direction of deformation, i.e., the tensile stress, is calculated as: 

 

2
0

0
2

0 20

( )( ) ( ( ), ( )) ( ) ( ( ), ( ))

( ) ( , ) ( )( , )
( )

U B

t

tt c p t t t P t p t

t t tc t d
m

φσ λ λ φ
φ

φ ξ λ τ λτ ζ τ
φ τ λ τ

∗

−∞

= Γ −

 ∂
+  ∂  

∫
 (S5.2) 

The value of stress in the transverse direction is zero and therefore,  

 

2
0

0
2

0 20

( )( ( ), ( )) ( ) ( ( ), ( ))

( )( ) ( , )( , ) 0
( )

U tr B

t
tr

tr

tc p t t t P t p t

tt tc t d
m

φλ λ φ
φ

λφ ξ λ ττ ζ τ
φ τ λ τ

∗

−∞

Γ −

 ∂
+ = ∂  

∫
 (S5.3) 

At a given tensile strain ( )tλ , ( )tr tλ  is determined through solving eq. (S5.3). The time-dependent 
probabilities of unfolding, ( )Up t  and binding, ( )Bp t , are calculated as described in the main text. 
Finally, eq. (S5.2) is used to calculate the tensile stress ( )tσ . 
 
S6. Effect of varying the rate constants 
 In our prior study, 1 we discussed the effects of the various parameters on the behavior of 
the gel system. For example, we determined the effect of the rate constants for bond rupture, rk  
and formation, fk , and the force sensitivity parameter , Rγ  , on the probability of unfolding a loop, 

Up . We further discussed how variations in Up  affect the steady-state chain extension  λ for 
various values of Rγ . We demonstrated that the unfolding occurs at progressively lower chain 
extensions as the dimensionless parameter /R bγ  is increased. The latter parameter characterizes 
the sensitivity of bond rupture to force. (In ref. 1, the parameter Rγ  was denoted 0γ .)  
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Furthermore, we showed that the degree of swelling increases as the number of Kuhn segments in 
the loop are increased.  
 In the latter study, 1 the system did not contain dangling chains with reactive ends. We now 
consider the possible interactions that involve the latter reactive ends and exposed, unfolded loop 
sites. In a subsequent paper, 2, we noted that all the parameters were chosen to highlight the 
difference between the case where the unfolded loops can bind to the reactive ends and the case 
where the ends of the dangling chains are non-reactive. We use the same parameters from the latter 
paper 2 in this work. We also assume that chain segments formed between unfolded loop sites and 
the dangling reactive ends cannot cross each other. In the calculations, we assume that the loops 
and dangling chains are relatively short. Specifically, we take 8 Kuhn segments for the loops, and 
2 Kuhn segments for the dangling chains. 
 In the main text, we considered the case where (0) (0) 2/ 2 10rfk k = ×  and 

(0) (0) 4/ 2 10uBCk k = × , i.e., (0) (0) (0)(0)/ /r uBCfk k k k< . The text details how the configuration of four 

different systems depends on these rate constants and subsequently, how the configurations affect 
the degree of swelling. The detailed discussion of the latter findings can be found in the discussion 
of Fig. 3. The behavior for the dynamic moduli of the four systems was also discussed in the main 
text. This discussion can be found in the descriptions of Figs. 4 and 5.   
 Here, we show the effect of varying the rate constant of folding relative to that of bond 
rupture at zero force. To show the effect of the rate constants on the four systems, we keep the 
relative rate of complexation (at zero force) equal to (0) (0) 4/ 2 10uBCk k = × , and increase the relative 

rate of folding (0) (0)/ rfk k . Specifically, we consider the following two cases: 

1) (0) (0) 4/ 2 10rfk k = ×  i.e., (0) (0) (0)(0)/ /r uBCfk k k k=  (see Fig. S3). 

2) (0) (0) 5/ 2 10rfk k = ×  i.e., (0) (0) (0)(0)/ /r uBCfk k k k>  (see Fig. S4). 

To facilitate the following discussion, we again define the four systems here. In System I (black), 
the loops are permanently in the unfolded state ( 1Up =  and 0Bp = ), and the ends of the dangling 
chains are inert. System II (blue) is similar to System I (black), except that the loops can undergo 
a folding and unfolding transition, but the ends of the dangling chains remain inert. In System III, 
the dangling ends are again inert ( 0Bp = ), but the loops are permanently folded. In System IV, 
the loops can undergo reversible folding and unfolding, and the dangling linkers with reactive ends 
can bind to the exposed loop sites. 

For case 1,  (0) (0) (0)(0) 4/ / 2 10r uBCfk k k k= = ×  and thus, the rate constant of folding is much 

larger than the rate of unfolding. As noted above, in System II (blue), the loops can undergo a 
folding and unfolding transition, but the ends of the dangling chains remain inert. Still, for the high 
value of the rate constant of folding, most of the loops will remain folded even though unfolding 
is permitted. The blue curve for System II shows essentially the same degree of swelling as that 
for System III (green) where the loops are permanently folded.  

Since most of the loops remain folded and (0) (0) (0)(0)/ /r uBCfk k k k= , the fraction of reactive 

ends bound to exposed loops also decreases. The degree of swelling in gel System IV (red) 
becomes nearly equal to that the of System II (unfolding and no binding)  except near the LCST 
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temperature. Near the transition temperature, some fraction of the unfolded chains are bound by 
the reactive ends of the linkers, and thus the degree of swelling exhibits a slight decrease (red 
curve) compared to the green and blue curves. The permanently unfolded and no binding units 
(black) show the most swelling since the loops are always open (Fig. S3(a)).  

The loops in System I are always in the unfolded state and the ends of the dangling chains 
are not reactive and hence, the system does not form the temporary crosslinks that would stiffen 
the gel. Consequently, among the four systems, System I swells the most and offers the least 
resistance to deformation; this behavior is reflected in the lowest value of the equilibrium moduli 
(black) for both shear and tensile deformation.  

Unlike System I, the other three systems behave like the system with permanently folded 
loops. The blue, green, and red  curves for the equilibrium moduli effectively overlap (Figs. S3(b) 
and S3(c)) with each other, showing that such a high rate constant of folding diminishes the effect 
of  the unfolding-folding transition. Additionally, both System II (blue) and IV (red) behave like 
System III, i.e., as if the loops are in permanently folded conformations. Figures S3(b) and S3(c) 
show that near the transition temperature, the moduli (red) has a higher value compared to the blue 
and green curves because some fraction of the unfolded chains are bound by the reactive ends of 
the linkers.  

For case 2: (0) (0) (0)(0)/ /r uBCfk k k k>  , the blue, green, red curves effectively overlap with 

each other showing that at such high values, the rate constant of folding dominates the kinetics;  
unfolding and binding are greatly hindered from occurring.  In effect, this parameter choice reduces 
System II (blue) and IV (red) to System III with permanently folded loops (green) (Fig. S4(a)-(c)). 

The dynamic moduli (Fig. S3(d) –(f) and S4(d) – (f)) of the four systems also exhibit the 
behavior discussed in the main text. Only System IV (red) shows frequency-dependent behavior. 
Note, however, that since the self-stiffening was lower for this choice of rate constant, the value 
of the dynamic moduli for the system with binding (red curve) at higher frequency shows a lower 
increase compared to the dynamic moduli curves in the main text. For System I-III (respective 
black, blue and green curves), the dynamic moduli have a constant value equal to the equilibrium 
moduli. However, the choice of a higher rate constant of folding causes the system with unfolding 
but inert reactive ends (blue) to behave similarly to the System III (system with permanently folded 
loops). As a result, the green and the blue curves, (Fig. S3(d) –(f) and S4(d)-(f)), essentially overlap 
while in Fig. 4-5 in the main text, System II (blue) behaved more like System I (black) i.e., as if 
the loops were permanently unfolded. 
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Figure S3. The equilibrium (a) lateral extensions λ , (b) shear moduli 0G , and (c) Young’s moduli 

0E  for the gel systems I – IV as functions of temperature. Panels (d) and (f) show the storage shear 
moduli  G′ as functions of the dimensionless frequency ω  at 22 CT = °  and 29 CT = ° , 
respectively. Panels (e) and (g) show the storage Young’s moduli E′ as functions of the 
dimensionless frequency ( )/ st

uBKω   at 22 CT = °  and 29 CT = ° , respectively. All moduli are scaled 
with respect to refG , which is the equilibrium shear modulus of the gel system I at 15 C°  . The 
lines show the numerical solution obtained using MathematicaTM. Calculations were performed at 

(0) (0) (0)(0) 4/ / 2 10r uBCfk k k k= = ×  and (0) (0) 4/ 2 10uBCk k = × . All other model parameters are 

specified in text.  
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Figure S4. The same as in Fig. S3 obtained at (0) (0) 5/ 2 10rfk k = × . 
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