Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2021

Supplementary information

Multifunctional hollow TPU fiber filled with liquid metal exhibiting fast

electrothermal deformation and recovery

Yan Xiong, ^{ab} Jieyu Xiao, ^{ab} Juan Chen, ^{ab} Da Xu, ^{ab} ShanShan Zhao, ^{ab} Shangbi Chen, ^{abcd} Bin Sheng*^{ab}

a School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

b Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China

c Shanghai Aerospace Control Technology Institute, Shanghai 200233, China

d Shanghai Xin Yue Lian Hui Electronic Technology Co. LTD, Shanghai 200233, China

*Corresponding Author.

E-mail address: bsheng@usst.edu.cn. (B. Sheng).

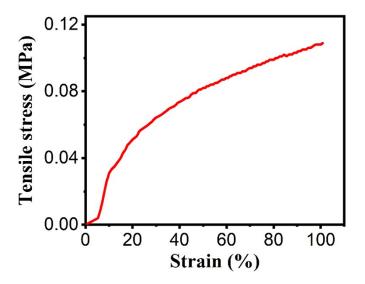


Fig. S1 The tensile stress–strain plots of DCF at 100% strain. DCF cannot recover after stretching more than 100%.

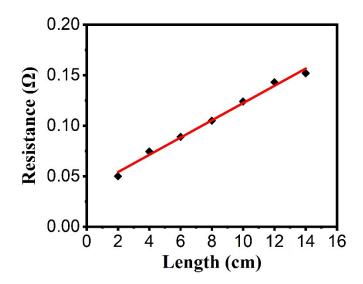
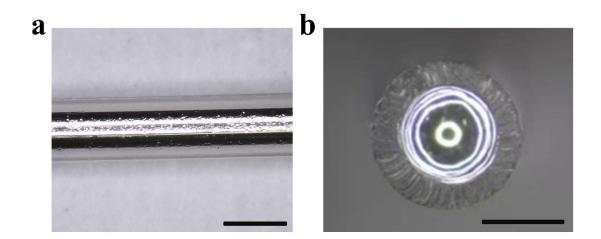



Fig. S2 The resistance of DCF increases linearly with its length.

Fig. S3 Optical micrograph of DCF. (a) Optical image of the axial of DCF. Scale bar represents 1 mm. (b) Optical image of the cross-section of DCF. Scale bar represents 0.5 mm.

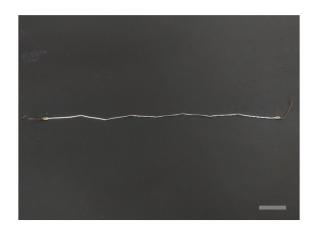


Fig. S4 Photographs of wave shape DCF being shaped back to initial shape. Scale bar represents 3 cm.

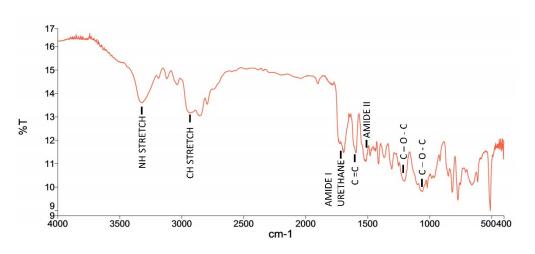


Fig. S5 Fourier infrared spectrum transmission curve of thermoplastic polyurethane.

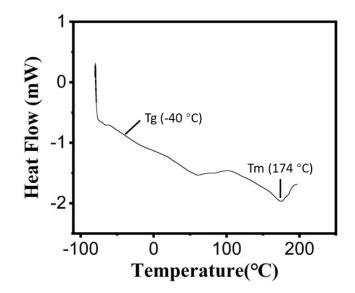


Fig. S6 The DSC graph of thermoplastic polyurethane.

Fig. S7 Photos of damaged DCF after being heated to 190 °C. Scale bar represents 5 mm.

Fig. S8 Photographs of double-torsional shape DCF. Scale bar represents 1 cm.

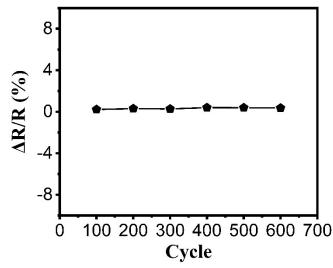


Fig. S9 Repeatability characterization of the helical DCF at 500% strain (with a C of 6).

D/L ₀	0.1	0.2	0.4	0.6	0.75	1.0	1.5	2.0	3.0
k	0.96	0.92	0.85	0.79	0.7	0.69	0.60	0.52	0.43

Table 1. Correspondence between k value and D/L_0