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1 Scattering amplitudes

1.1 Spherical particles

The scattering amplitude of a sphere with radius R and homogeneous scatter-
ing length distribution, ρ(r) = ρ, under evanescent illumination is generally
given by

Bnw(Q, κ,R) = ρ
∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ R

0
dr r2 exp {iQ · r} exp

{
−κz

2

}
(1)

in polar coordinates. The scattering vector Q and the position vector r
are given as

Q =

 Q‖
0
Q⊥

 and r =

 cosφ sin θ r
sinφ sin θ r

cos θ r

 (2)

where we may select Q‖ = Qx because of the problems invariance with re-
spect to rotation around the z-axis which is normal to the reflecting interface.
With the substitutions y = r/R and µ = cos θ we obtain

Bnw(Q, κ,R) = R3ρ
∫ 1

−1
dµ (3)∫ 1

0
dy y2 exp {iQ⊥Ryµ} exp

{
−κRyµ

2

} ∫ 2π

0
dφ exp

{
iQ‖Ry cosφ

√
1− µ2

}
Using the tabulated integral∫ 2π

0
dα exp {iA cosα} = 2πJ0(A) (4)
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with J0 indicating the zeroth order Bessel function of the first kind we can
write

Bnw(Q, κ,R) = 2πR3ρ
∫ 1

−1
dµ
∫ 1

0
dy y2 exp {iQ⊥Ryµ} exp

{
−κRyµ

2

}
J0

(
Q‖Ry

√
1− µ2

)
.

(5)
Replacing the complex exponential by its trigonometric form we obtain

Bnw(Q, κ,R) = 2πR3ρ
[∫ 1

−1
dµ (6)∫ 1

0
dy y2 cos (Q⊥yµR) exp

{
−yµκR

2

}
J0

(
Q‖
√

1− µ2yR
)

+ i
∫ 1

0
dy y2 sin (Q⊥yµR) exp

{
−yµκR

2

}
J0

(
Q‖
√

1− µ2yR
)]
.

1.2 Core-shell particles

Along the same line of argument, it is straightforward to derive the form
amplitude for a spherical core-shell particle with scattering length densities
ρC for 0 < r < RC and ρS for RC < r < R

Bnw(Q‖, Q⊥, κ, RC , R) = 2πR3
(∫ 1

−1
dµ (7)

ρC

[∫ χ

0
dyy2 cos(Q⊥yµR) exp

{
−yµκR

2

}
J0(Q‖

√
1− µ2yR)

+ i
∫ χ

0
dyy2 sin(Q⊥yµR) exp

{
−yµκR

2

}
J0(Q‖

√
1− µ2yR)

]
+ ρS

[∫ 1

χ
dyy2 cos(Q⊥yµR) exp

{
−yµκR

2

}
J0(Q‖

√
1− µ2yR)

+ i
∫ 1

χ
dyy2 sin(Q⊥yµR) exp

{
−yµκR

2

}
J0(Q‖

√
1− µ2yR)

])

where χ = RC/R.

1.3 Spherical particles with surface roughness

An approximation for the form amplitude of spherical particles with small
surface asperities can be derived, starting from the geometry shown in Fig.1.
For the situation with a constant illumination profile the form amplitude may
be separated into a part resulting from the spherical core body, BC , and a



contribution from asperities which are very small compared to the reciprocal
scattering vector with volume ∆Vj located at rj on the surface of the core

B(Q,R) = ρCBC +
N∑
j=1

∆Vjρj exp {iQ · rj} , (8)

where ρj is the scatering length density of the j-th asperity.

Figure 1: Schematic representation of a rough particle consisting of a spher-
ical core with radius R and asperities of volume ∆Vj and scattering length
density ρj located at rj.

Assuming that all asperities have the same scattering length density ρj =
ρa and writing the sum as a volume integral, we obtain

B(Q,R) = ρCBC(Q,R) + ρa

∫
dr exp {iQ · r} . (9)

The volume integral can be turned into a surface integral assuming that
the asperities are infinitely small and randomly distributed over the surface.

B(Q,R) = ρCBC(Q,R) + ρa∆hR
2
∮
dŝ exp {iQ · r̂R} (10)



= ρCBC(Q,R) + ρa∆hR
2
∫ 2π

0

∫ 1

−1
dµ exp {iQRµ}

= ρCBC(Q,R) + ρa∆hR
2 2π

iQR
[exp {iQR} − exp {−iQR}] .

Here, again we substituted cos θ = µ and the scattering vector was chosen
to lie the z-direction, which is possible due to the spherical symmetry of
the problem. Replacing the complex exponentials by their trigonometric
representation, we obtain

B(Q,R) = ρCBC(Q,R) + ρa∆V
sin(QR)

QR
. (11)

where the second term can be interpreted as the form amplitude of a thin
shell with scattering length density ρa and an effective thickness ∆h, which
is small compared to the reciprocal scattering vector, corresponding to an
effective volume ∆V = 4πR2∆h.

For the situation in EWDLS, we have to include the exponentially de-
caying illumination profile into Eq.10 and consider the resulting symmetry
break.

Bnw(Q, κ,R) = ρCBC,nw(Q, κ,R) + ρa∆hR
2
∮
dŝ exp {iQ · r̂R} exp

{
−κz

2

}
= ρCBC,nw(Q, κ,R) + ρa∆hR

2 (12)

×
∫ 2π

0

∫ 1

−1
dµ exp

{
iR
(
Q‖ cosφ

√
1− µ2 +Q⊥µ

)}
exp

{
−µκR

2

}
After inverting the succession of integrations and applying again Eq. 4

the trigonometric representation of the form amplitude under evanescent
illumination take the form

Bnw(Q, κ,R) = ρCBC,nw(Q, κ,R) + ρa
∆V

2
(13)

×
[∫ 1

−1
dµ cos(Q⊥µR) exp

{
−µκR

2

}
J0

(
Q‖
√

1− µ2R
)

+ i
∫ 1

−1
dµ sin(Q⊥µR) exp

{
−µκR

2

}
J0

(
Q‖
√

1− µ2R
)]
,

which represents the limiting case of Eq. 7 for an infinitely thin shell.



2 Polydispersity effect on the dynamics of

hard spheres

The effect of polydispersity on the near wall dynamics of non-interacting
spherical particles is shown in Fig.2 for particles with Gaussian size distri-
bution. Significant deviations from the monodisperse reference system are
observed only for the largest standard deviations and the highest penetra-
tion depths of the evanescent wave. Intriguingly, the effect of polydispersity
become larger with decreasing mean radius at constant standard deviation.

Figure 2: Normalized parallel diffusion coefficients versus normalized pene-
tration depth for spherical particles with a Gaussian size distribution, inter-
acting only by excluded volume. Left: mean radius µ = 100 nm and relative
standard deviations as indicated in the legend. Right: Relative standard
deviation σ = 0.1 and mean radii as indicated in the legend. Symbols are
data calculated as described in the main text and the full line represents the
prediction for monodisperse hard sphere particles.

3 Original data and data analysis

Analysis of EWDLS intensity auto-correlation functions, g2(t) is notoriously
hampered by a varying degree of homodyne-heterodyne mixing, as inhomo-
geneities of the reflecting surface and small impurities will inevitably lead to
a static contribution to the scattering signal which leads to a reduction of
the amplitude, A, of g2(t). Therefore, g2(t) has to be converted to the field
correlation function g1(t) by solving the generalized Siegert relation [1]

g2(t) = 1 + 2C1g1(t) + (C2g1(t))
2 (14)



where C2 = 1−
√

1− A and C1 = C2 −C2
2 . In the following we show sets of

correlation functions for the three particle types investigated, which illustrate
the process of data analysis, the reproducibility of g2(t) and the data quality.
All correlation functions were measured in the middle of the covered- Q2

‖ -
range and at an angle of incidence αi ≈ 62.8. The full set of data requires to
validate this contribution will be made accessible on zenodo after publication

3.1 Data from SSi suspensions
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Figure 3: Time auto-correlation functions of the scattered intensity from
the SSi suspension repeatedly measured as indicated in the legend at Q2

‖=

24.67× 10−5 and 2/κ〈RH〉z= 2.87.
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Figure 4: Time auto-correlation functions of the scattered intensity from an
SSi suspension measured at 2/κ〈RH〉z= 2.87 and various at Q2

‖ as indicated
in the legend.
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Figure 5: Time auto-correlations functions of the scattered field, g1(t), from
an SSi suspension calculated from the g2(t)-data shown in Fig.4 by solving the
generalized Siegert relation of Eq.14. The original g2(t)-data were measured
at 2/κ〈RH〉z= 2.87 and various at Q2

‖ as indicated in the legend.
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Figure 6: Initial slopes, Γ, of the g1(t)-curves shown in Fig.5 plotted vs.
Q2
‖ (symbols). Not all measured correlation functions are shown. The full line

represents a linear least squares fit resulting the averaged diffusion coefficient
〈D‖〉(κ) = 2250nm2/ms.



3.2 Data from HSi suspensions
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Figure 7: Time auto-correlation functions of the scattered intensity from
an HSi suspension repeatedly measured as indicated in the legend at Q2

‖=

26.33× 10−5 and 2/κ〈RH〉z= 1.45.
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Figure 8: Time auto-correlation functions of the scattered intensity from an
HSi suspension measured at 2/κ〈RH〉z= 1.45 and various at Q2

‖ as indicated
in the legend.
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Figure 9: Time auto-correlation functions of the scattered field, g1(t), from an
HSi suspension calculated from the g2(t)-data shown in Fig.8 by solving the
generalized Siegert relation of Eq.14. The original g2(t)-data were measured
at 2/κ〈RH〉z= 1.45 and various at Q2

‖ as indicated in the legend.
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Figure 10: Initial slopes, Γ, of the g1(t)-curves shown in Fig.9 plotted vs.
Q2
‖ (symbols). The full line represents a linear least squares fit resulting the

averaged diffusion coefficient 〈D‖〉(κ) = 1260nm2/ms.



3.3 Data from RSi suspensions
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Figure 11: Time auto-correlation functions of the scattered intensity from
an RSi suspension repeatedly measured as indicated in the legend at Q2

‖=

23.7× 10−5 and 2/κ〈RH〉z= 2.57.
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Figure 12: Time auto-correlation functions of the scattered intensity from an
RSi suspension measured at 2/κ〈RH〉z= 2.57 and various at Q2

‖ as indicated
in the legend.
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Figure 13: Time auto-correlation functions of the scattered field, g1(t), from
an RSi suspension calculated from the g2(t)-data shown in Fig.12 by solving
the generalized Siegert relation of Eq.14. The original g2(t)-data were mea-
sured at 2/κ〈RH〉z= 2.57 and various at Q2

‖ as indicated in the legend.
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Figure 14: Initial slopes, Γ, of the g1(t)-curves shown in Fig.13 plotted vs.
Q2
‖ (symbols). Not all measured correlation functions are shown. The full line

represents a linear least squares fit resulting the averaged diffusion coefficient
〈D‖〉(κ) = 1200nm2/ms.
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