
Electronic Supplementary Information file
Soft Matter, 2021, DOI: 10.1039/D1SM01242H

Square-triangle tilings : 
An infinite playground for soft matter
Marianne Impéror-Clerc,∗a Anuradha Jagannathan,a

Pavel Kalugin,a and Jean-François Sadoca

A Lift in 4D
A.1 Geometry in 4D
Here are introduced a few useful geometrical features of the Eu-
clidean space in four dimensions. In a 4D orthonormal basis of
four unit vectors, labelled (I,J,K,L), any 4D-vector X has four
coordinates:

X = xI+ yJ+ x⊥K+ y⊥L (31)

A 2D-plane of the 4D space is defined by two non-colinear 4D-
vectors through the origin. To the orthonormal basis, a set of six
2D-planes can be associated: (I,J), (I,K), (I,L), (J,K), (J,L) and
(K,L). Among them, two orthogonal 2D-planes, (I,J) and (K,L)
are selected to play a special role, as they are used to represent
any 4D-vector X by its two projections onto them. It is this projec-
tion scheme that is used in the lift construction, keeping always
the same two 2D-planes. The two sets of coordinates (x,y) and
(x⊥,y⊥) can be represented separately onto two Euclidean planes,
labelled respectively P and P⊥. The four-dimensional Euclidean
space can be defined as the orthogonal direct sum P⊕P⊥ where
the planes P and P⊥ are two embedded 2D orthogonal subspaces.
By extension, the 2D-plane in 4D containing the 4D-vectors of
coordinates (x,y,0,0) is also named P.

Fig. 18 Geometry in 4D: (a) 4D-vector (b) 2D-plane PA and its hypers-
lope (given by a 2x2 matrix A) relative to the plane P.

In general, a 2D-plane PA can be defined by the linear combina-
tion of two non-colinear 4D-vectors of coordinates (a,b,c,d) and
(e, f ,g,h) in the (I,J,K,L) orthonormal basis. A 4D-vector is in
the 2D-plane PA if it is of the form:

X =


x
y

x⊥
y⊥

= λ


a
b
c
d

+µ


e
f
g
h

 (32)

where λ and µ are two linear coefficients. This linear relation
can be expressed equivalently as follows:(

x⊥
y⊥

)
= A

(
x
y

)
(33)

where A is a (2x2) matrix:

A =

(
Ax⊥x Ax⊥y

Ay⊥x Ay⊥y

)
=

(
c f−bg
a f−be

ag−ce
a f−be

d f−bh
a f−be

ah−de
a f−be

)
(34)

The geometrical interpretation of the matrix A is the hyperslope
of the 2D-plane PA with respect to the plane P and it contains 4
coefficients in the general case. In a symmetric matrix, Ax⊥y =

Ay⊥x and only three independent coefficients are present. Such
symmetric matrices are noted B in the main text.

Finally, we introduce a second orthonormal basis, (I′,J′, ′K,L′),
as it may simplify some relations :

I′ =
I+K√

2
,J′ =

I−K√
2

,K′ =
J+L√

2
,L′ =

J−L√
2

(35)

A.2 4D lattice for the lift of square-triangle tilings
The standard construction of the lifting of a square-triangle
tiling of the Euclidean plane P is detailed here following the
literature.21,27 Coming back to the six different orientations for
edges (see Figure 2), one can observe that only four of six vectors
e1, . . . ,e6 ∈ P given by the formula (1) are linearly independent
over Z (for instance, e5 = e3 − e1 and e6 = e4 − e2). Therefore,
any vertex v of a square-triangle tiling is naturally indexed by 4
integers n1, . . . ,n4 :

v =
4

∑
i=1

niei. (36)

as it belongs to the Z-module of rang 4 spanned by the vectors
e1, . . . ,e4. One can associate with the vertex v its counterpart v⊥
in another Euclidean plane P⊥ (the so-called “inner” or “perpen-
dicular” space) :

v⊥ =
4

∑
i=1

niei⊥ , (37)

where the vectors ei⊥ have the following coordinates (in some
fixed orthonormal basis of P⊥):21

ei⊥ = a

(
cos 7π(i−1)

6
sin 7π(i−1)

6

)
(38)

The four-dimensional Euclidean space used for the lift construc-
tion is defined as the orthogonal direct sum P⊕P⊥. This space
contains the planes P and P⊥ as orthogonal two-dimensional sub-
spaces. The “lifted” version of any vertex v is defined as the 4D-
vertex V = (v,v⊥) ∈ P⊕P⊥. Thus, the 4D vertices of the lifted
tiling belong to a lattice spanned by four basis vectors εεε i = (ei,ei⊥)

in P⊕P⊥ :

V = (v,v⊥) =
4

∑
i=1

niεεε i =
4

∑
i=1

ni(ei,ei⊥) (39)

In this way, the lift of any square-triangle tiling is a subset off
the 4D periodic lattice with the basis {εεε1,εεε2,εεε3,εεε4}. It is worth
noting that this 4D lattice is not cubic (for instance, all vectors
εεε i have the norm a

√
2 and the volume of the unit cell is 3a2).

Instead, this lattice can be considered as a direct sum of regular
triangular lattices belonging to two orthogonal 2D-planes in the
space P⊕P⊥, which we denote by PT13 and PT24 . The 2D-plane
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PT13 is defined by the two 4D vectors εεε1 and εεε3, with vertices
(v,v⊥) = n1εεε1 + n3εεε3. Similarly, the two lattice vectors εεε2 and
εεε4 define the 2D-plane PT24 . In Fig. 19, a scheme illustrates these
relationships, underlining the fact that the two 2D-planes PT13 and
PT24 are orthogonal to each other, but not to P and P⊥.

The coordinates of the 4D-vectors {εεε1,εεε2,εεε3,εεε4} in the
(I,J,K,L) orthonormal basis introduced previously (see A.1)
reads:

(εεε1,εεε2,εεε3,εεε4) = a




1
0
1
0

 ,


√

3/2
1/2
−
√

3/2
−1/2

 ,


1/2√
3/2

1/2√
3/2

 ,


0
1
0
−1


 (40)

As εεε i = (ei,ei⊥), the two first coordinates of εεε i in the orthonormal

Fig. 19 Scheme of the 4D periodic lattice of basis vectors {εεε1,εεε2,εεε3,εεε4}.

basis (I,J,K,L) are the coordinates of ei in P (see Eq. 1) when
the two last ones are the coordinates of ei⊥ in P⊥ (see Eq. 38).

In the second orthonormal basis (I′,J′,K′,L′) introduced in A.1
(see Eq. 35), the basis vectors of the 4D periodic lattice read:

εεε1 = a
√

2I′

εεε2 = a
√

2(

√
3

2
J′+

1
2

L′)

εεε3 = a
√

2(
1
2

I′+
√

3
2

K′)

εεε4 = a
√

2L′ (41)

(εεε1,εεε2,εεε3,εεε4)I′J′K′L′ = a
√

2




1
0
0
0

 ,


0√
3/2
0

1/2

 ,


1/2

0√
3/2
0

 ,


0
0
0
1




(42)

The fact that the 2D-planes PT13 and PT24 are orthogonal to each
other is obtained here as they identify respectively to (I′,K′) and
(J′,L′), two mutually orthogonal 2D-planes generated by basis
vectors of the second orthonormal basis. Morover, in Eq. 42, the
direct sum into two triangular lattices is more obvious than in Eq.

40.

A.3 4D reciprocal lattice for diffraction

Fig. 20 Reciprocal lattice in 4D. (a) Lattice vectors and associated
reciprocal lattice vectors. P∗ and P∗⊥ are the reciprocal planes associated
to P and P⊥. (b) Illustration for the pure phase S1 made of square tiles
generated by the lattice vectors e1 and e4 in the plane P.

The 4D reciprocal lattice is defined by generalising the usual
definitions in 3D :

εεε iεεε
∗
j = 2πδi j (43)

It leads to the following reciprocal lattice 4D-vectors, expressed
in the second orthonormal basis (I′,J′,K′,L′) (see Eq. 35) :

εεε
∗
1 =

2π

a
√

2
2√
3
(

√
3

2
I′− 1

2
K′)

εεε
∗
2 =

2π

a
√

2
2√
3

J′

εεε
∗
3 =

2π

a
√

2
2√
3

K′

εεε
∗
4 =

2π

a
√

2
2√
3
(−1

2
J′+
√

3
2

L′) (44)

The reciprocal 4D-vectors in the orthonormal basis (I,J,K,L)
read:
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(εεε∗1,εεε
∗
2,εεε
∗
3,εεε
∗
4) =

2π

a
√

3



√

3/2
−1/2√

3/2
−1/2

 ,


1
0
−1
0

 ,


0
1
0
1

 ,


−1/2√

3/2
1/2
−
√

3/2




(45)
The associated 2D lattice vectors in P∗ and P∗⊥ are labelled re-
spectively (eee∗1,eee

∗
2,eee
∗
3,eee
∗
4) and (eee∗1⊥,eee

∗
2⊥,eee

∗
3⊥,eee

∗
4⊥). They are plotted

in Figure 20.

B Global uniformity
For the proof of proposition 1 (section 4.2), let us start by proving
the “if” statement. Consider an infinite square-triangle tiling with
an asymptotically linear lifting map of the form (16) and a se-
quence of growing patches (Pi) (see Figure 4) such that the ratio
|∂Pi|2/|Pi| is bounded. Let J(x) stand for the Jacobian derivative
of ϕ:

Jαβ (x) =
∂ϕα (x)

∂xβ
,

where the point x ∈Pi lies in the interior of a tile. This 2×
2 matrix-valued function takes five possible values given by the
matrices BΦ from Table 2. Notably, det(J(x)) equals 1 if x is inside
a triangle and −1 for x lying inside a square. Therefore, the area-
weighted average of det(J(x)) over Pi is given by the formula

〈det(J(x))〉Pi
= |Pi|−1

∫
Pi

det(J(x)) dx = τ(Pi)−σ(Pi). (46)

By Stokes’ theorem, one can express the integral over the patch
Pi in (46) via an integral over its boundary ∂Pi:∫

Pi

det(J(x)) dx =
∫
Pi

dϕ(x)∧dϕ(x) =
1
2

ε
αβ

∮
∂Pi

ϕα (x)dϕβ (x),

(47)
where εαβ is the Levi-Civita symbol and the integration over ∂Pi

is performed counterclockwise. Since one can always choose the
origin of the coordinate system within the patch Pi, we can safely
assume that ‖x‖< |∂Pi| for all points in the path of the integral in
(47). Then, equation (16) gives rise to the following asymptotic
formula:∮

∂Pi

ϕα (x)dϕβ (x) = Bαγ

∮
∂Pi

xγ dϕβ (x)+o(|∂Pi|2). (48)

The asymptotic behavior of the integral in (48) can be obtained
in the same way:∮

∂Pi

xγ dϕβ (x) =−
∮

∂Pi

ϕβ (x)dxγ =−Bβδ

∮
∂Pi

xδ dxγ +o(|∂Pi|2).

(49)
By combining equations (46), (47), (48) and (49), and taking
into account the following identities:∮

∂Pi

xδ dxγ = ε
δγ |Pi|

−1
2

ε
αβ

ε
δγ Bαγ Bβδ = det(B),

we obtain

τ(Pi)−σ(Pi) = det(B)+o
(
|∂Pi|2

)
/|Pi|. (50)

Consider now the area-weighted average of J(x) over the patch
Pi: 〈

Jαβ

〉
Pi

=
1
|Pi|

∫
Pi

Jαβ (x)d2x. (51)

Again, using Stokes’ theorem we get〈
Jαβ

〉
Pi

=
εβγ

2|Pi|

∮
∂Pi

ϕα (x)dxγ

As follows from equation (16), the above integral behaves asymp-
totically as∮

∂Pi

ϕα (x)dxγ =Bαδ

∮
∂Pi

xδ dxγ +o(|∂Pi|2)=Bαδ ε
δγ |Pi|+o(|∂Pi|2).

This gives rise to the following estimate of 〈J〉Pi
:〈

Jαβ

〉
Pi

= Bαβ +o
(
|∂Pi|2

)
/|Pi|. (52)

The integral in (51) can also be computed as a sum of contri-
butions of individual tile species, yielding

〈J〉Pi
= σ1(Pi)BS1 +σ2(Pi)BS2 +σ3(Pi)BS3+

+ τ13(Pi)BT 13 + τ24(Pi)BT 24, (53)

where the matrices BS1, BS2, BS3, BT 13 and BT 24 are given in
Table 2. Since these matrices are symmetric, this equation con-
tains three linear constraints on the area fractions of different tile
species in Pi. Together with (46) and the condition

σ1(Pi)+σ2(Pi)+σ3(Pi)+ τ13(Pi)+ τ24(Pi) = 1

these constraints fix entirely the area fractions in terms of
〈
Jαβ

〉
Pi

and 〈det(J(x))〉Pi
. On the other hand, since |∂Pi|2/|Pi| is as-

sumed bounded, equations (52) and (50) read as

lim
i→∞

〈
Jαβ

〉
Pi

= Bαβ

and
lim
i→∞
〈det(J(x))〉Pi

= det(B).

Therefore, the area fractions σ1(Pi), σ2(Pi), σ3(Pi), τ13(Pi)

and τ24(Pi) have well-defined limits (see eq. (3)) and the con-
sidered tiling is globally uniform.

Let us now prove the “only if” part of Proposition 1. We shall
proceed by reductio ad absurdum. Let us assume that there exists
a globally uniform tiling such that its lifting map ϕ is not asymp-
totically linear. For a globally uniform tiling one can define the
matrix B by the formula

Bαβ = lim
|Pi|→∞

〈
Jαβ

〉
Pi

, (54)

for any sequence of patches Pi, such that the ratio |∂Pi|2/|Pi|
is bounded. By the hypothesis, there should exist a real constant
M > 0 such that one can a vector x∈ P of an arbitrarily large norm
l = ‖x‖ for which

‖ϕ(x)−B ·x‖> Ml. (55)

Let us consider a rectangle R ⊂ P of dimensions l× Ml
2 such that
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Fig. 21 The rectangular region R used in the proof of Proposition 1. The
bold broken line is the boundary of the largest tiling patch P contained
withing R.

the points 0 and x are the centers of its edges of length Ml
2 (see

Figure 21). Denote by nβ the components of the unit vector n =

x/‖x‖. By Stoke’s theorem, we get

nβ
(〈

Jαβ

〉
R
−Bαβ

)
=

nβ εβγ

Ml2

∮
∂R

(
ϕα (x)−Bαδ xδ

)
dxγ (56)

The contribution of the edges of R parallel to x to the right-hand
side of (56) vanishes after multiplication by nβ εβγ . To estimate
the contribution of the remaining two edges, we observe that the
integrand in (56) is Lipschitz continuous with Lipschitz constant
2. Indeed, the spectral radius of the Jacobian derivative J (and
hence also that of the matrix B in (54)) is bounded by 1. There-
fore, taking into account (55), for any two points a and b belong-
ing respectively to the edges of R containing 0 and x (see Figure
21), one has

‖ϕ(a)−B ·a‖ ≤ 2‖a‖
‖ϕ(b)−B ·b‖ ≥Ml−2‖b−x‖

(57)

Formulas (57) provide a lower bound for the integral in (56),
giving rise to the following inequality

‖(〈J〉R −B) ·n‖ ≥ M
4
.

Let now P stand for the largest patch of the tiling contained
within the rectangle R. As the aspect ratio of R is fixed,
|∂P|2/|P| is bounded from above by some constant not depend-
ing on l. For large l, the contribution of the interstice between P

and R to 〈J〉P is negligible and one has

‖(〈J〉P −B) ·n‖ ≥ M
4
+o(1) as l→ ∞. (58)

Since by the assumption the norm of x can be arbitrarily large,
we can construct a sequence of patches Pi, such that the ratio
|∂Pi|2/|Pi| is bounded from above, but ‖〈J〉Pi

−B‖ is bounded
from below, in contradiction with (54). This contradiction proves
the statement.

As now the equivalence between the global uniformity and the
asymptotic linearity of the lifting map is established, to finish the

proof it remains only to observe that (53) in the limit of infinite
tilings gives

B = σ1BS1 +σ2BS2 +σ3BS3 + τ13BT 13 + τ24BT 24. (59)

yielding (17). Similarly, the equation (18) arises as the limit of
(46).

C Special phases
C.1 The Σ phase
C.1.1 Structure factor of the Σ phase

The 32434 vertices have four different orientations depicted in
black, blue, magenta and green in the different figures. The
edge’s size of the centered square unit cell is aΣ = a(1 +

√
3)

where a is the edge’s size of the tiles. It contains eight vertices
when the square primitive unit cell contains four vertices. As
pictured in Figure 9, each set of vertices having the same color
forms a regular square lattice of edge’s size a(1+

√
3)/
√

2, turned
by an angle of π/4 with respect to the centered square unit
cell. Starting from one of these four regular square lattices, the
three other ones can be obtained by translation using the three
translation vectors e1, e3 and e1− e3.
The 2D structure factor of the Σ phase is defined as the Fourier

Fig. 22 Detail of the structure factor of the Σ phase including HK
indices (see also Figure 10). The twelvefold symmetry is only approxi-
mate. The (60) and (53) peaks are not exactly positioned on the same
circle (G∗53/G∗60 = 0.9718) and their intensities are not exactly the same
(I53/I60 = 0.9976).

transform of the points lattice located on the vertices. It can be
calculated taking for example the following coordinates of the
four vertices in the plane P (using unit vectors 1

a e1 and 1
a e4):

(a/2,0) (−a/2,0)
(

0,a
√

3/2
) (

0,−a
√

3/2
)

The 2D structure factor consists in a periodic lattice of diffraction
peaks that can be indexed using two integer indices HK
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G∗HK =
2π

aΣ

(
H

1
a

e1 +K
1
a

e4

)
=

2π

a
(
1+
√

3
) (H

1
a

e1 +K
1
a

e4

)
(60)

and the intensities of the Bragg peaks are IHK = |FHK |2 with:

FHK = 2
[
1+(−1)(H+K)

][
cos
(

π

1+
√

3
H
)
+ cos

(
π
√

3
1+
√

3
K

)]
(61)

The 2D structure factor is shown in Figures 10 and 22. A re-
markable feature is that the modulations in the intensities are not
periodic, as can be seen in the expression of FHK in the cosine
terms due to the presence of irrational terms. This is due to the
irrational coordinates of the lattice points in the square unit cell.
This feature of the structure factor is linked to the intrinsic incom-
mensurability of square-triangle tilings.

In Figure 22, the HK indices are reported for some Bragg peaks.
The set of twelve diffraction peaks with (6,0) and (5,3) indices is
remarkable as it form an approximate figure with 12-fold sym-
metry. But it is only approximate as the peaks are not exactly
positioned all on the same circle (G∗53/G∗60 = 0.9718) and their
intensities are not exactly the same (I53/I60 = 0.9976), with tiny
differences of less than 1 percent.

Fig. 23 Lift in 4D of the Σ phase. The 4D vertices are located in
four different 2D-planes having the same hyperslope BΣ and which are
translated from each other. In each 2D-plane, the vertices have the same
orientation (same color) and form a regular square lattice.

C.1.2 4D lift of the Σ phase

The lift construction in the 4D space consists in associating to
each vertex in the plane P a 4D lifted vertex. This association can
be done in different ways. Here we choose to place the origin

of the plane P on a black vertex which is lifted to the origin of
the 4D space (see Figure 23). A blue vertex near to the origin is
lifted to the 4D vertex εεε1, a magenta one to εεε3 and a green one to
εεε1− εεε3. In 4D, all other vertices are obtained by translation. All
vertices of the same color are lifted in the same 2D-plane using
the two translation vectors εεε2+εεε3 and εεε3−εεε1+εεε4−εεε2. The black
vertices are embedded in a plane containing the origin when the
three other planes are parallel to this plane and can be deduced by
translation from the origin using εεε1 (blue vertices), εεε3 (magenta
vertices) and εεε1− εεε3 (green vertices).

The expression of the matrix BΣ is given in Eq. 20. Its
expression can be identified to the hyperslope with respect to the
plane P (2x2 matrix A, see Eq. 34) of the plane defined by the
two vectors εεε2 + εεε3 and εεε3− εεε1 + εεε4− εεε2. It can be verified from
the expression of the (εεε1,εεε2,εεε3,εεε4) 4D-vectors in the (I,J,K,L)
orthonormal basis (see Eq. 40), leading to:

εεε2 + εεε3 = a


α

α

−β

β

 ;εεε3− εεε1 + εεε4− εεε2 = a


−α

α

β

β

 (62)

with
α = (

√
3+1)/2;β = (

√
3−1)/2 (63)

Using the general expression of the hyperslope (2x2 matrix A)
with respect to the plane P (see Eq. 34), the identity A = BΣ is
verified.
To construct the projections in the planes P and P⊥ (see Figure
9), we use the four integer indices notation already introduced
in equation 39. The lift construction allows to index each ver-
tex with a unique set of four integers (n1,n2,n3,n4) writing that
(v,v⊥) = n1εεε1 + n2εεε2 + n3εεε3 + n4εεε4. For example, the black 4D
vertices have the following 4D integer coordinates where n,m are
two integers:

(v,v⊥)black = n(εεε2 + εεε3)+m(εεε3− εεε1 + εεε4− εεε2) =


−m

n−m
n+m

m

 (64)

C.1.3 Infinite sequence of phases with the same composi-
tion.

To illustrate the fact that, except for the five pure phases, any
composition point corresponds to an infinite number of phases,
let’s consider the following transformation (Figure 24).

It consists in replacing each triangle and square by four iden-
tical tiles and applying afterwards a scale factor of two to keep
the tile’s dimension. This transformation preserves both the ratio
Nt/Ns and the tiles orientation distribution so the 3D composition
point is fixed. By applying it several times, one can generate an
infinite sequence of other phases located at the same composition
point. Applied at a composition point like ΣΣΣ1, starting from the
Σ phase, an infinite sequence of periodic phases with increasing
unit cell size is obtained. Note that all these periodic phases are
globally uniform and couldn’t be generated by a cut-and-project
method. The infinite limit is a coexistence of domains of four pure
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Fig. 24 A simple transformation of tiles generating an infinite sequence
of phases at a fixed composition point. The ratio Nt/Ns is preserved as
both tiles number are multiplied by a factor four and the tiles orientation
distribution is the same as well. It is illustrated at the composition point
ΣΣΣ1.

phases around a junction point (see section 6.2).

C.2 Structure factor of the H phase
The 2D structure factor of the Archimedean H phase is calculated
in a similar way as for the Σ phase using a rectangular centered
lattice of dimensions a and (2 +

√
3)a with two vertices per

node at positions (0,a/2) and (0,−a/2) (see Figure 8 for the
orientation of the H phase). The 2D structure factor is shown in
Figure 25 and consists in a periodic set of Bragg peaks that can
be indexed by two integer indices HK of intensities IHK = |FHK |2

with:

FHK = 2
[
1+(−1)(H+K)

]
cos
(

πK
2+
√

3

)
(65)

A remarkable feature is the way how the intensities of the

Fig. 25 Structure factor of the H phase. The infinite 1D stripes are
horizontal and the stack direction is vertical like in Figure 8.

Bragg peaks are modulated. The whole structure factor can be
decomposed in two types of infinite vertical lines of Bragg peaks
of intensities I0K with K even and I1K with K odd. Along the
horizontal direction, these lines of Bragg peaks alternate in a
simple periodic fashion. This is expected because the infinite
stripes of tiles along the horizontal direction are periodic (rows
of square or triangles) (see Figure 8). But along the vertical
direction, the intensities are modulated via the cosine term in
eq. 65. Because of the presence of the irrational ratio 2+

√
3, it

is impossible for two diffraction peaks to have exactly the same
intensity. In other words, even if the cosine function is periodic, it
is sampled at irrational values. It comes from the fact the period
of the 1D stack of stripes, here (2 +

√
3)a, is incommensurate

with a.
This aperiodicity in the Bragg peak intensities along the stack
direction is a strong signature of the incommesurability between
the two tiles dimensions, a and a

√
3/2. In a system where the

two tiles dimensions would be in a rational ratio, in the cosine
term, this ratio would appear as a fraction of two integers, and
the Bragg peaks intensities would exhibit periodic modulations
along the stack direction.
One can also notice in Figure 25 that a set of twelve diffraction
peaks show an approximate 12-fold symmetry, but this feature is
much less striking than for the Σ phase (see Figures 10 and 22).
It makes sense as the 3D composition point of the H phase is very
asymmetric.

C.3 Striped phases
C.3.1 Stacking sequence and average slope

The stacking sequence is built using two vectors, e4 for square
tiles and e3 for the triangular tiles. The vertices in plane P have
the form v= n1e1+n3e3+n4e4, with the stripes direction along e1.
The stack of the stripes is given by a sequence of vectors e3 (stripe
of triangular tiles) and e4 (stripe of square tiles) that follows a
straight line which slope b(τ) is related to the composition, as
illustrated in Figure 11a. Simultaneously in P⊥, the associated
vertices are v⊥ = n1e1⊥

+n3e3⊥
+n4e4⊥

. As a result, in the plane P,
the stacking sequence (e3 and e4 lattice vectors) follows a straight
line of slope b(τ). Similarly, in the plane P⊥, the stacking sequence
(made of e3⊥

and e4⊥
lattice vectors) follows a straight line of

slope b⊥(τ). The expression of these two slopes read:

b(τ) =
y
x
=

√
3

τ
,

b⊥(τ) =
y⊥
x⊥

=
√

3
τ−σ

τ
=
√

3
2τ−1

τ
(66)

If only square tiles are present (τ = 0), the average slope in the
plane P is vertical and the striped phase is the S1 pure phase (see
Figure 11a). Similarly, for τ = 1, the slope coefficient is equal
to
√

3 and the striped phase is the T13 pure phase. For all other
compositions, the average slope is in between these two values.
In particular, for τ = 1

2 , b = 2
√

3 (plane P) and b⊥ = 0 (plane P⊥).
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This last feature is characteristic of aperiodic order: the stacking
sequence in the plane P⊥ follows the horizontal line along x⊥.

C.3.2 Staircase

Fig. 26 Lift construction for striped phases. A stacking sequence can
be visualized as a ’3D staircase’. Each ’step’ of the 3D staircase has
a vertical side of height a

√
2 and an horizontal side of width a

√
2
√

3
2 .

Vertical portions (in red) correspond to the S1 pure phase when horizontal
ones (in blue) correspond to the T13 pure phase. The plane defined by
the two vectors (εεε3, εεε4) forms a square lattice of parameter a

√
2 and its

intersection with the plane P is a line depicted in light green color.

For striped phases, the lift construction in the 4D space is made
using only three vectors (εεε1,εεε3,εεε4) instead of 4 in the general
case. The stacking sequence is expressed onto the two 4D lattice
vectors εεε3 and εεε4. The lifted version of a striped phase can be
visualised as a “staircase’ (Figure 26). To do so, one can define
a 3D subspace of the 4D space by taking all components along J′

equal to zero. In this 3D subspace, all vectors have three com-
ponents in an orthonormal basis (I′3D,K

′
3D,L

′
3D) which is derived

from the second 4D orthonormal basis (Eq. 42) and the lattice
vectors read:

εεε1,3D = a
√

2I′3D

εεε3,3D = a
√

2(
1
2

I′3D +

√
3

2
K′3D)

εεε4,3D = a
√

2L′3D

(εεε1,3D,εεε3,3D,εεε4,3D)I′3DK′3DL′3D
= a
√

2


1

0
0

 ,

 1/2√
3/2
0

 ,

0
0
1



(67)

The steps of the ’3D-staircase’ (see Figure 26) are along L′3D
(with a vertical edge of height a

√
2) and along K′3D with a width

a
√

2
√

3
2 , corresponding to the coordinate of εεε3,3D along K′3D. Em-

bedded in this 3D subspace, the plane P is constructed with
the two vectors basis (I′3D, K′3D + L′3D) and the plane P⊥ with
(I′3D, K′3D −L′3D). P and P⊥ are still orthogonal to each other
and are turned by an angle of π/4 along I′3D. The intersec-
tion between the plane P and the plane (εεε3,3D,εεε4,3D) is along

the direction (1,
√

3,
√

3). The irrational slope
√

3
2 (see Eq. 22)

is obtained writing that this direction is along the 3D-vector
2( 1

2 I′3D +
√

3
2 K′3D)+

√
3L′3D. The plane defined by the two vectors

(εεε3,3D, εεε4,3D) form a square lattice of parameter a
√

2. Note that
this plane is tilted by an angle of π/3 along the vertical direction
L′3D, where (I′3D, K′3D, L′3D) is a 3D orthonormal basis. The plane
P is inclined at an angle of π/4 along the direction K′3D+L′3D. The
intersection of the plane P with the plane (εεε3,3D, εεε4,3D) is a line
shown with a light green color.

D Inflation constructions
D.1 Striped phases: 1D aperiodic order
Starting from some initial “seed", a longer sequence is constructed
by using the following substitution rules: 1) each stripe s is re-
placed by a copies of s and four stripes t and 2) each stripe t is
replaced by 3 stripes s and a copies of t, where a≥ 0 is an integer.
Upon iteration, these substitution rules generate periodic phases
with bigger and bigger unit cell, and one approaches a perfect
1D quasiperiodic structure at the limit of an infinite number of
iterations. An example of the first three steps of a construction
corresponding to a = 3 is shown in Fig. 12b.

If the number of s strips, N(i)
s , and the number of t stripes N(i)

t
at the ith step are known, their number at the i+1th step can be
readily found, since the substitution rules imply that

µi+1 =

(
a 4
3 a

)
µi (68)

where µi = {N
(i)
s ,N(i)

t }.32 The maximal eigenvalue (called the
Perron root) of the 2 by 2 matrix of this equation and its
corresponding eigenvector provide information on, respectively,
the rate of growth of the tiling, and on the relative proportion
of s and t type strips. This eigenvalue is (a+ 2

√
3), for all values

of the integer parameter a, and the corresponding eigenvector is
{
√

3/2,1}. This shows that the ratio of triangles to squares tends
towards the value

√
3/2.

D.2 Maximally symmetric phases
The initial seed is a dodecagonal wheel (see Figure 13). Its com-
position is maximally symmetric. It contains the same number
of T1/T3 (blue color) and T2/T4 (red color) triangles (Nt12,0 =

Nt34,0 = 6), and the same number for each of the three kinds
of squares (Ns1,0 = Ns2,0 = Ns3,0 = 2). For the seed, the ratio
Nt,0/Ns,0 = 12/6 = 2 has a rational value. After an infinite number
of iterations tends, this ratio in tiles number reaches the irrational
value Nt/Ns = 4/

√
3.

Initial conditions are Nt,0 = 12 and Ns,0 = 6. If we denote
by Nt,i and Ns,i the number of triangles and squares at inflation
step i, after the next inflation step, these numbers are given
by Nt,i+1 = 7Nt,i + 3Ns,i and Ns,i+1 = 16Nt,i + 7Ns,i. This is en-
coded in the following transfer matrix form to compute the vector
νi = {Nt,i,Ns,i} :

νi+1 =

(
7 3

16 7

)
νi (69)

To the Perron root (7+4
√

3) of this matrix corresponds an eigen-
vector {

√
3/4,1}. It is easily checked that the limiting value of the

ratio of tiles is Nt/Ns = 4/
√

3.
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Fig. 27 Selection stripes for i) the periodic sequence of B-tiles (S1,
θ = π/2) ii) the periodic sequence of A-tiles (S2, θ = 0) and iii) the
Fibonacci quasiperiodic sequence (S3, θ = arctan(1/λ1)). Selected points
are projected onto the “physical" x axis, giving rise to a sequence of A
and B tiles.

To obtain the dodecagonal QC phase shown in Fig. 13a, the
following rule is followed.32 If there are a majority of blue bonds
emanating from the ’parent’ site then the dodecagon contains a B
hexagon, and otherwise it contains the R hexagon. Note that in
this construction, it is impossible to get four squares around a site
during the inflation process, so the rule can always be applied,
in the interior of the patch. For the sites located on the border
of the patch at a given iteration step, one needs to examine the
environment of that after the next iteration step. This is the rule
applied to obtain the patch after one inflation step.

E Diffraction
In this section we discuss some properties of the structure fac-
tor, S(~q), a physical quantity which is measurable by a diffraction
experiment and useful to distinguish between different types of
spatial organization of particles. It is defined by V S(~q) = |ρ(~q)|2

where V is the volume of the sample and ρ(~q) is the Fourier
transform of the spatial density. We will consider the simplest
situation in which unit point masses are located at each vertex,
ρ(~r) = ∑ j δ (~r−~R j) where δ (~r) is a delta-function and ~R j are the
positions of the N particles j = 1, ....,N.

E.1 The Fibonacci sequence
To explain how one can compute the structure factor of a qua-
sicrystal and its periodic approximants, it is convenient to begin
with a one dimensional example, the Fibonacci sequence. This
1D quasicrystal is an infinite sequence built of two kinds of tiles
(line segments) called A and B. This quasicrystal can be lifted
to a square grid in a 2D space by using the following rules: ev-
ery A tile corresponds, in 2D, to a horizontal displacement a~uX ,
and each B tile to a vertical displacement a~uY . This results in a
broken path in 2D (see Fig.27) linking vertices that lie inside a
stripe having a slope equal to λ

−1
1 where λ1 =

1+
√

5
2 is the golden

mean. Note that the same construction can be done for any other
irrational slope like

√
3/2 (see section 5.3). The x axis is paral-

lel to the strip, and represents the physical direction while the

y axis (not shown) is the perpendicular direction. The lengths
of the A and B tiles are xA = acosθ and xB = asinθ respectively.
The “selection strip" (so-called for evident reasons) has a width
of W = a(cosθ + sinθ) along the y-axis. The “composition space"
for this and related binary structures is a line segment, where the
two extremities represent periodic crystals: at one extremity is
a tiling consisting only of A-tiles, and at the other only B-tiles.
In the select-and-project method, these correspond to selection
stripes with the angle θ equal to 0 and π/2, respectively (namely
the stripes S2 and S1 in Fig.27). The periodic approximants of
the Fibonacci sequence are obtained by stripes with the rational
slopes Fn−1/Fn where the Fn are the Fibonacci numbers, obey-
ing the recursion relation Fn = Fn−1 +Fn−2 with F0 = F1 = 1. The
sequence ABABABAB, for example, is a periodic approximant of
slope F0/F1 = 1 (θ = π/4), the next approximant is the sequence
ABAABAABA... and has a selection stripe of slope F1/F2 = 1/2,
and so on, the lengths of the approximants increasing with n, re-
sulting in the Fibonacci sequence when n goes to infinity.

Thanks to this 2D representation of the quasicrystal it is simple
to compute the Fourier transform (FT) of the Fibonacci sequence.
We will assume the spatial distribution ρ(x) = ∑ j δ (x− xn) where
xn is the coordinate of the nth site. In the 2D representation, the
mass density can be expressed as a product, as follows

ρ(~R) = ρsl(~R) χ(~R)

ρsl(~R) = ∑
m,n

δ (~R−~Rmn) (70)

where ρsl denotes the square lattice mass density, with ~Rmn =

ma~uX + na~uY are the vertices. The function χ takes the value 1
if ~R lies inside the strip, i.e if the projection 0 < ~R.~uy < W and 0
otherwise. It follows from the relation 70 that the FT of the se-
quence is given by a convolution of the FTs of the square lattice,
ρsl(~Q) – non-zero for ~Q = ~Gh,k =

2π

a (h~uX + k~uY ) – and that of the
function χ, defined by

χ(~Q) =
∫

d~R ei~Q.~R

∼V δ (qx)
∫ W

0
dyeiqyy

χ(qy) (71)

In the second line above we have changed the integration vari-
ables in the rotated basis, where

qx =
2π

a
(hcosθ + k sinθ)

qy =
2π

a
(−hsinθ + k cosθ) (72)

The resulting S(qx) has Bragg peaks along the qx-axis at posi-
tions indexed by h,k. Their intensities are given by |χ(qy)|2 =
4sin2(qyW/2)

q2
y

. The projections of the 2D reciprocal lattice points

gives rise to a dense set of Bragg peaks along the qx axis. However
the intensities for most of the peaks are negligibly small, and only
a subset of the peaks corresponding to small qy values are observ-
able (see Fig.28). For approximants, the analysis proceeds along
similar lines. The principal difference arises due to the fact that
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Fig. 28 Structure factor S(q) plotted versus (physical space wave vector
q (in units of 2π) for the perfect Fibonacci sequence. The indices above
each peak indicate the corresponding 2D reciprocal lattice vector ~Gh,k

Fig. 29 Structure factors for three successive approximants of number
of sites equal to 5 (blue), 8(green) and 13 (orange).

the stripe has a rational slope. As a result, the Bragg peaks are
spaced regularly with ∆q = 2π/L, where L is the length of the ap-
proximant. Their intensities are given by the FT of the χ function
defined with respect to the appropriate selection strip. The right-
hand side of Fig.28 shows the structure factors of three approx-
imant sequences to illustrate the manner in which the structure
factor of approximants approach that of the infinite quasicrystal.

E.2 Square-triangle approximant phases
We can now extend these ideas to a perfect dodecagonal qua-
sicrystal (ie, with no disorder) using the lift construction in the
4D superspace (see section A. In that case, the lifted vertices lie
within an infinite stripe whose orientation is parallel to the phys-
ical axes. Their projections onto the perpendicular space P⊥ lie
within a selection window W of finite extent and having a 12-fold
symmetry (see Figure 14). As for the Fibonacci sequence, the
mass density is a product of the 4D periodic lattice and a function
χ. Thus the FT of the tiling is given by the convolution of two
structure factors. The first is that of the 4D reciprocal lattice, (see
section A.3), whose basis vectors project onto a star of 12 vectors

in the physical plane P. These are given by28

G∗n =
2π

a
√

3
(cos

(n−1)π
6

,sin
(n−1)π

6
) (73)

where a is the edge length of the tiles. As was already noted
in the real space description, only four of the twelve reciprocal
lattice vectors G∗n are rationally independent. They are labelled
(eee∗1,eee

∗
2,eee
∗
3,eee
∗
4) (see Figure 20 in section A.3). Thus, there are Bragg

peaks at~q‖ positions which can be indexed by the integers h,k, l,m
representing linear combinations of these four reciprocal lattice
vectors. The intensities of each peak depends on these indices via
the FT of the window W , and again, the observable peaks cor-
respond to perpendicular space coordinates ~q⊥ which are small
(aq⊥ ≤ 1).

Fig. 30 (left) The sigma phase structure showing a unit cell outlined
in blue. Its composition is given by X = −0.268... and Y = Z = 0 with
τ = 0.464.... (right) Structure factor of the sigma phase in the (qx,qy)

plane. Circles have radii corresponding to the peak intensity. Black dots
indicate peak positions for the perfect quasicrystal showing the shifts due
to finite global phason strain.

Turning next to the sigma phase shown in Fig. 30, the lift pro-
cedure yields a stripe which is inclined with respect to the plane
P. This is encoded by the global phason strain B (see section 5.2).
For this periodic approximant, the stripe has a rational direction
in the 4D superspace. One can once again define a selection win-
dow by a region W in the plane perpendicular to the strip. As
seen before for the approximants of the quasicrystal, the peaks
in the reciprocal space ~q‖ lie on a grid of spacing 2π/L where L
is the period of the crystal. Fig.30 shows the structure factor –
the radius of the red circles is proportional to the intensity of the
peak. We note that these peaks are shifted with respect to the po-
sitions quasicrystal (shown by black dots) because the projection
axes are slightly rotated with respect to the perfect QC.

A similar argument applies in the case of a bigger square ap-
proximant phase, of larger periodic length L based on repeating
dodecagonal wheels as illustrated in Fig. 31. The structure fac-
tor of this phase is shown superimposed upon that of the sigma
phase, showing the small shifts that occur when going from one
approximant to the next. In the limit of the stripe becoming hor-
izontal, one converges to the structure factor of the perfect qua-
sicrystal.

Several comments are now in order. 1) in contrast to the Fi-
bonacci sequence the window W has a fractal structure for the
square triangle dodecagonal QC. As a result, Bragg peaks scale
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Fig. 31 (left) A periodic square approximant phase with the unit cell
outlined in blue. Its composition is given by X = 0.1436... and Y = Z = 0
with τ = 0.4897.... (right) The structure factor shown by blue circles. At
each peak position the circle size is proportional to the intensity.

as a fractional power in the system size rather than linearly. It
would however be probably very difficult to experimentally mea-
sure this type of scaling. 2) The discussion given above can be
extended to random tilings, for which the selection stripe has an
irregular “wavy" form in 4D. The analysis in this case predicts a
structure factor with broadened peaks of diminished intensity due
to a disorder-induced Debye-Waller type factor, and in addition a
diffuse background.28
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