Supporting information

Predicting the outcomes of interpolyelectrolyte neutralization at surfaces on the basis of complexation experiments and *vice versa*

Jasmina Jukić^a, Davor Kovačević^a, Nikola Cindro^a, Rok Fink^b, Martina Oder^b, Ana-Marija Milisav^{b,1}, and Josip Požar^{b,*}

^aDivision of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia

^bFaculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia

¹ Present address: Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

^{*} Corresponding author. E-mail: <u>pozar@chem.pmf.hr</u>

Figure S1. a) Mean effective hydrodynamic diameters and (b) electrophoretic mobilities of complexes prepared by titrations of PDADMA·Cl with Na·PSS and *vice versa* at 25 °C; $c_{\rm m}$ (titrand) = 1×10⁻³ mol dm⁻³, $c_{\rm m}$ (titrant) = 2×10⁻² mol dm⁻³.

Figure S2. a) Mean effective hydrodynamic diameters and (b) electrophoretic mobilities of complexes prepared by titrations of PVP·Br with Na·PSS and *vice versa* followed by abrupt addition of one equivalent of titrant at 25 °C; c_m (titrand) = 1×10⁻³ mol dm⁻³, c_m (titrant) = 2×10⁻² mol dm⁻³.

Figure S4. a) Corrected (stacked) thermograms and, b) successive normalized enthalpy changes (divided by amount of titrant monomer added) obtained during Na·PSS ($c_m = 5 \times 10^{-3}$ mol dm⁻³, V = 1.3 mL) titration with PVP·Br, ($c_m = 5 \times 10^{-2}$ mol dm⁻³), $\vartheta = 25.0$ °C.

Table S1. Enthalpies of PVP-PSS primary complex formation at 25.0 °C.

$(\Delta_r H_{PSS \rightarrow PVP} \pm SE)/kJ \text{ mol}^{-1}$	$(\Delta_r H_{PVP \rightarrow PSS} \pm SE)/kJ \text{ mol}^{-1}$
1.95 ± 0.03	0.90 ± 0.03

Figure S5. a) Corrected (stacked) thermogram and, b) successive normalized enthalpy changes (divided by amount of titrant monomer added)obtained during PDADMA·Cl titration ($c_{\rm m} = 5 \times 10^{-3}$ mol dm⁻³, V = 1.3 mL) with Na·PSS ($c_{\rm m} = 5 \times 10^{-2}$ mol dm⁻³), $\vartheta = 25.0$ °C.

Figure S6. a) Corrected (stacked) thermograms and, b) successive normalized enthalpy changes (divided by amount of titrant monomer added) obtained during Na·PSS ($c_m = 5 \times 10^{-3} \text{ mol dm}^{-3}$, V = 1.3 mL) titration with PDADMA·Cl ($c_m = 5 \times 10^{-2} \text{ mol dm}^{-3}$), $\vartheta = 25.0 \text{ °C}$.

Table S2. Enthalpies of PDADMA-PSS primary complex formation at 25.0 °C.

$(\Delta_r H_{\text{PSS} \to \text{PDADMA}} \pm \text{SE})/\text{kJ mol}^{-1}$	$(\Delta_r H_{PDADMA \rightarrow PSS} \pm SE)/kJ \text{ mol}^{-1}$
-2.89 ± 0.01	-2.60 ± 0.09

Figure S7. Potentiometric titration of PVP·Br with sodium salt solutions containing different anions; $c_{\rm m}(\text{PVP}\cdot\text{Br}) = 3 \times 10^{-3} \text{ mol dm}^{-3}$, $V(\text{PVP}\cdot\text{Br}) = 40 \text{ mL}$, $c(\text{NaX}) = 0.9 \text{ mol dm}^{-3}$, $\vartheta = 25.0 \text{ °C}$.

The peculiar decrease in Br⁻ activity above approximately 1:1 monomolar ratio in the case of PVP titration with NaClO₄ is induced by precipitation of PVP·ClO₄ salt. -The formation of precipitate changes the ionic strength of solution thereby affecting the activity or released bromides.

Figure S8. Potentiometric titration of PDADMA·Cl with sodium salts solutions containing different anions; $c_{\rm m}$ (PDADMA·Cl) = 3×10⁻³ mol dm⁻³, V_0 (PDADMA·Cl) = 40 mL, c(NaX) = 0.9 mol dm⁻³, ϑ = 25.0 °C.

Figure S9. Potentiometric titration of PAH·Cl with sodium salt solutions containing different anions; $c_{\rm m}$ (PAH·Cl) = 3×10⁻³ mol dm⁻³, V(PAH·Cl) = 40 mL, c(NaX) = 0.9 mol dm⁻³, θ = 25.0 °C.

Figure S10. Mean effective hydrodynamic diameters of complexes prepared by titration of PDADMA·Cl ($c_m = 1.0 \times 10^{-3} \text{ mol dm}^{-3}$, $V_0 = 2.0 \text{ mL}$) with Na·PSS ($c_m = 2.0 \times 10^{-2} \text{ dm}^{-3}$) in 0.1 mol dm⁻³ salt solutions at 25 °C.

Figure S11. Mean effective hydrodynamic diameters of complexes prepared by titration of Na·PSS ($c_m = 1.0 \times 10^{-3} \text{ mol dm}^{-3}$, V = 2.0 mL) with PVP·Br ($c_m = 2.0 \times 10^{-2} \text{ mol dm}^{-3}$) in 0.1 mol dm⁻³ salt solutions at 25 °C.

Figure S12. Mean effective hydrodynamic diameters of complexes prepared by titration of Na·PSS ($c_m = 1.0 \times 10^{-3} \text{ mol dm}^{-3}$, V = 2.0 mL) with PDADMA·Cl ($c_m = 2.0 \times 10^{-2} \text{ mol dm}^{-3}$) in 0.1 mol dm⁻³ salt solutions at 25 °C.

Figure S13. Electrophoretic mobility of particles obtained by titrating positive a) PDADMA-PSS and b) positive PVP-PSS complexes (n(PSS)/n(polycation) = 0.5) with NaNO₃ ($c = 5 \mod \text{dm}^{-3}$) and NaClO₄ ($c = 0.25 \mod \text{dm}^{-3}$) at 25 °C. Positive complexes were prepared by the addition of Na·PSS ($c_m = 5 \times 10^{-2} \mod \text{dm}^{-3}$) to solution containing either PDADMA·Cl or PVP·Br ($c_m = 1 \times 10^{-3} \mod \text{dm}^{-3}$, V = 2 mL).

Figure S14. Mean effective hydrodynamic diameters of particles obtained by repetitive titrations of positive PVP-PSS complexes (n(PSS)/n(polycation) = 0.5) with a) NaCl ($c = 5 \mod \text{dm}^{-3}$) and b) NaClO₄ ($c = 0.25 \mod \text{dm}^{-3}$) at 25 °C. Positive complexes were prepared by the addition of Na·PSS ($c_m = 5 \times 10^{-2} \mod \text{dm}^{-3}$) to solution containing PVP·Br ($c_m = 1 \times 10^{-3} \mod \text{dm}^{-3}$, V = 2 mL).

Table S3. Time dependence of mean effective hydrodynamic diameter of particles obtained by titrating positive PVP-PSS complexes (n(PSS)/n(PVP) = 0.5) with NaCl and NaBr ($c = 5 \mod \text{dm}^{-3}$) at 25 °C. Positive complexes were prepared by the addition of Na·PSS ($c_m = 5 \times 10^{-2} \mod \text{dm}^{-3}$) to solution containing PVP·Br ($c_m = 1 \times 10^{-3} \mod \text{dm}^{-3}$, V = 2 mL); CC- coagulation concentration.

			d _{eff} /nm			
salt	<i>c</i> (salt) /% CC	after preparation	1 h	24 h	3 d	5 d
NaCl	50	223	208	244	271	306
NaCl	80	253	312	448	518	aggregation
NaBr	50	205.4	192	200	202	216
NaBr	80	210.5	239	341	684	aggregation

Figure S15. a) Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of PDADMA·Cl with Na·PSS and *vice versa* at equimolar monomer ratios ($c_m = 3.3 \times 10^{-3} \text{ mol dm}^{-3}$, l = 1 cm) in 0.1 mol dm⁻³ NaBr at 25 °C and b) corresponding results for PVP·Br-Na·PSS system in 0.5 mol dm⁻³ NaBr.

Figure S16. a) Corrected (stacked) thermograms and, b) successive normalized (divided by amount of titrant monomer added) enthalpy changes obtained during Na·PSS ($c_m = 5 \times 10^{-3} \text{ mol dm}^{-3}$, V = 1.3 mL) titration with PVP·Br ($c_m = 5 \times 10^{-2} \text{ mol dm}^{-3}$) in 0.1 mol dm⁻³ NaX at 25.0 °C.

Table S4. Enthalpies of PVP-PSS primary negatively charged complex formation in 0.1 mol dm⁻³ NaX at 25.0 $^{\circ}\text{C}$

NaX	$(\Delta_r H_{PVP \rightarrow PSS} \pm SE)/kJ \text{ mol}^{-1}$
NaF	-1.94 ± 0.09
NaNO ₃	0.99 ± 0.03
NaBr	2.27 ± 0.07

Figure S17. a) Corrected (stacked) thermograms and, b) successive normalized (divided by amount of titrant monomer added) enthalpy changes obtained during PDADMA·Cl ($c_m = 5 \times 10^{-3} \text{ mol dm}^{-3}$, V = 1.3 mL) titration with Na·PSS ($c_m = 5 \times 10^{-2} \text{ mol dm}^{-3}$) in 0.1 mol dm⁻³ NaX at 25.0 °C.

Figure S18. a) Corrected (stacked) thermograms and, b) successive normalized (divided by amount of titrant monomer added) enthalpy changes obtained by Na·PSS ($c_m = 5 \times 10^{-3}$ mol dm⁻³, V = 1.3 mL) titration with PDADMA·Cl ($c_m = 5 \times 10^{-2}$ mol dm⁻³) in 0.1 mol dm⁻³ NaX at 25.0 °C.

Table S5. Enthalpies of PDADMA-PSS primary positively and negatively charged complex formation in 0.1 mol dm⁻³ NaX at 25.0 $^{\circ}$ C

salt	$(\Delta_{\rm r} H_{\rm PSS \rightarrow PDADMA} \pm {\rm SE})/{\rm kJ}~{\rm mol}^{-1}$	$(\Delta_r H_{PDADMA \rightarrow PSS} \pm SE)/kJ mol^{-1}$
NaF	-4.45 ± 0.05	-4.81 ± 0.09
NaNO ₃	-2.86 ± 0.07	-2.08 ± 0.02
NaCl	-2.14 ± 0.04	-2.25 ± 0.03
NaBr	-1.25 ± 0.01	-0.64 ± 0.01

Figure S19. successive normalized (divided by amount of titrant monomer added) enthalpy changes obtained by Na·PSS ($c_m = 5 \times 10^{-3} \text{ mol dm}^{-3}$, V = 1.3 mL) titration with PVP· Br ($c_m = 5 \times 10^{-2} \text{ mol dm}^{-3}$) in 0.1 mol dm⁻³ NaBr at 25.0 °C.

Figure S20. a) Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of PDADMA·Cl with Na·PSS and *vice versa* at equimolar monomer ratio ($c_m = 3.3 \times 10^{-3}$ mol dm⁻³, l = 1 cm) in 0.1 mol dm⁻³ NaBr at 25 °C, 24 h after preparation and b) corresponding results for PVP·Br-Na·PSS system in 0.5 mol dm⁻³ NaBr at 25 °C, 48 h after preparation.

Figure S21. Thickness change during assembly of PAH/PSS ($c_m(PAH) = c_m(PSS) = 1 \times 10^{-3} \text{ mol dm}^{-3}$) multilayers in NaCl at 25 °C; flow rate = 150 µL min⁻¹.

Figure S22. Thickness change during assembly of PAH/PSS ($c_{\rm m}$ (PAH) = $c_{\rm m}$ (PSS) = 1×10⁻³ mol dm⁻³) multilayers in NaClO₄ at 25 °C; flow rate = 150 µL min⁻¹.

Figure S23. Frequency shift (third harmonic) of oscillating quartz crystal during assembly of PAH/PSS $(c_{\rm m}({\rm PAH}) = c_{\rm m}({\rm PSS}) = 1 \times 10^{-3} \text{ mol dm}^{-3})$ multilayers in 0.5 mol dm⁻³ NaClO₄ solution and their alternating rinsing with PBS buffer ($c({\rm PBS}) = 0.15 \text{ mol dm}^{-3}$, pH = 7.4) and NaClO₄ (0.5 mol dm⁻³), $\vartheta = 25.0 \text{ °C}$.