Supporting Information

Can small air bubbles probe very low frother concentration faster?

Piotr Pawliszak^a, Vamseekrishna Ulaganathan^a, Bronwyn H. Bradshaw-Hajek^b, Reinhard Miller^c, David A. Beattie^{a,d,e*}, and Marta Krasowska^{a,d,e*}

^a Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes SA 5095, Australia

^b UniSA STEM, University of South Australia, Mawson Lakes SA 5095, Australia.

^c Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany

^{*d*} ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia

^e ARC Training Centre for Integrated Operations for Complex Resources, Australia

* Corresponding Authors: M.K. (Marta.Krasowska@unisa.edu.au) D. A. B. (David.Beattie@unisa.edu.au)

МІВС				DowFroth 250			
С	<i>D</i> (μm)	U _t (mm·s⁻¹)	Re	с	<i>D</i> (μm)	U _t (mm·s⁻¹)	Re
1ppm (1×10 ⁻⁵ mol·L ⁻¹)	506±2	74.7±1.0	35.8	0.1ppm - (3.8×10 ⁻⁷ mol·L ⁻¹) -	505±2	63.0±0.3	30.1
	488±3	71.6±1.2	33.1		490±2	60.8±0.4	28.2
	432±1	57.4±0.2	23.5		430±1	50.1±0.3	20.4
	414±2	56.0±0.8	21.9		415±1	48.5±0.2	19.1
	336±1	36.3±0.7	11.5		334±1	36.4±0.1	11.5
	250±2	23.4±0.1	5.5		250±1	23.5±0.1	5.6
5ppm (5×10 ⁻⁵ mol·L ⁻¹)	504±2	63.2±1.2	30.1	- - - (1.9×10 ⁻⁶ mol·L ⁻¹) -	506±1	57.7±0.2	27.6
	488±1	61.0±1.2	28.2		492±1	55.7±0.1	25.9
	429±2	49.9±0.4	20.2		431±1	47.8±0.2	19.4
	413±1	48.9±0.5	19.0		416±2	46.3±0.3	18.3
	335±2	34.9±0.5	11.1		334±1	35.2±0.1	11.1
	249±3	22.8±0.1	5.4		252±1	23.0±0.2	5.5
10ppm (1×10 ⁻⁴ mol·L ⁻¹)	504±2	60.0±0.5	28.6	1ppm - (3.8×10 ⁻⁶ mol·L ⁻¹) -	505±2	56.8±0.1	27.1
	489±2	57.7±0.8	26.7		490±1	54.8±0.4	25.4
	429±1	46.9±0.2	19.1		430±1	47.2±0.4	19.2
	415±2	46.2±0.5	18.1		415±3	45.9±0.4	18.0
	337±2	34.5±0.3	11.0		335±1	34.9±0.2	11.1
	248±2	22.4±0.1	5.2		251±2	22.7±0.1	5.4
50ppm (5×10 ⁻⁴ mol·L ^{.1})	506±1	56.2±0.6	26.9	- 2ppm - (7.6×10 ⁻⁶ mol·L ⁻¹) -	505±1	56.4±0.2	26.9
	488±3	53.8±1.0	24.9		491±1	54.4±0.2	25.2
	430±1	46.0±0.2	18.7		430±2	46.8±0.1	19.1
	416±3	44.6±0.3	17.6		414±1	45.5±0.1	17.8
	337±1	33.6±0.1	10.7		335±2	34.6±0.2	11.0
	250±1	22.2±0.1	5.1		252±2	22.4±0.2	5.3
100ppm (1×10 ⁻³ mol·L ⁻¹)	505±2	55.9±0.4	26.7	5ppm - (1.9×10 ⁻⁵ mol·L ⁻¹)	506±1	55.0±0.2	26.8
	490±2	53.5±1.1	24.6		489±2	53.8±0.1	24.9
	431±1	45.3±0.1	18.4		431±1	46.4±0.1	18.9
	413±2	43.8±0.2	17.1		414±1	44.9±0.2	17.6
	334±1	33.4±0.2	10.5		334±2	34.2±0.2	10.8
	248±2	22.1±0.1	5.1		251±1	22.2±0.1	5.2

Table S1. Terminal velocities U_t and Re for each of the studied systems.

	МІВС		DowFroth 250			
	<i>D</i> (μm)	<i>M</i> _p (%)		<i>D</i> (μm)	<i>M</i> _p (%)	
	506±2	50.7		505±2	21.4	
c = 1ppm (1×10 ⁻⁵ mol·L ⁻¹)	488±3	50.3	<i>c</i> = 0.1ppm (3.8×10 ⁻⁷ mol·L ⁻¹)	490±2	21.5	
	432±1	43.4		430±1	16.8	
γ = 72.3 mN·m⁻¹	414±2	44.1	γ = 72.3 mN·m ⁻¹	415±1	16.3	
θ = 0.20 %	336±1	16.8	θ = 1.09 %	334±1	15.5	
	250±2	12.5	-	250±1	13.4	
_	504±2	22.0		506±1	8.1	
c = 5ppm (5×10 ⁻⁵ mol·L ⁻¹)	488±1	22.2	<i>c</i> = 0.5ppm (1.9×10 ⁻⁶ mol·L ⁻¹)	492±1	8.0	
	429±2	17.3		431±1	8.3	
γ = 72.0 mN·m⁻¹	413±1	17.5	γ = 72.0 mN·m⁻¹	416±2	8.1	
θ = 1.02 %	335±2	8.8	θ = 5.17 %	334±1	6.5	
	249±3	7.0	-	252±1	4.6	
	504±2	14.0	<i>c</i> = 1ppm (3.8×10 ⁻⁶ mol·L ⁻¹)	505±2	5.9	
<i>c</i> = 10ppm (1×10 ⁻⁴ mol·L ⁻¹)	489±2	13.5		490±1	5.7	
	429±1	7.1		430±1	6.6	
γ = 71.9 mN·m ⁻¹	415±2	7.5	γ = 71.8 mN·m ⁻¹	415±3	6.5	
θ = 2.02 %	337±2	6.5	θ = 9.74 %	335±1	5.0	
	248±2	3.6		251±2	3.0	
50	506±1	4.4	3	505±1	4.9	
<i>c</i> = 50ppm (5×10 ⁻⁴ mol·L ⁻¹)	488±3	3.0	c = 2ppm (7.6×10 ⁻⁶ mol·L ⁻¹)	491±1	4.7	
71.2	430±1	2.3		430±2	5.2	
γ = /1.2 mN·m *	416±3	2.4	γ = / 1.1 miN·m ⁻¹	414±1	5.1	
θ = 9.08 %	337±1	1.3	θ = 17.42 %	335±2	3.4	
	250±1	0.9		252±2	2.1	
100mm	505±2	3.6	<i>c</i> = 5ppm (1.9×10 ⁻⁵ mol·L ⁻¹)	506±1	4.0	
<i>c</i> = 100ppm (1×10 ⁻³ mol·L ⁻¹)	490±2	2.2		489±2	3.1	
70.0	431±1	0.5		431±1	3.6	
γ = 70.0 mN·m ⁻	413±2	0.6	γ = 69.8 mN·m ⁻	414±1	2.8	
θ = 16.11 %	334±1	0.6	θ = 33.15 %	334±2	1.8	
	248±2	0.5		251±1	1.2	

Table S2. Mobility percentage for each of the studied systems.