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Supporting Figures: 
 
 

 
Figure S1. Binding of ENTH without its amphipathic helix present is insensitive to 
curvature. (a) Experimental surface coverage measurements of the hexa-histidine tag 
ENTH (his-ENTH) that lacks the amphipathic helices are converted to dissociation 
constants as described in the main text. (b) The corresponding membrane energy change is 
nearly flat, due to the curvature insensitivity across all vesicle sizes. The solution 
concentration of the his-ENTH experiment is 25 nM.  
 
 
 

 
Figure S2. Influence of the osmotic pressure and the membrane area elasticity on 
membrane energy changes. (a) Changes to the volume constraint coefficient, 𝜇! , 
reflecting changes in osmotic pressure, do not cause discernable changes in the membrane 
energy following insertion. 𝜇" =  250 pN/nm. (b) Changes to the area elasticity 𝜇" 
similarly do not impact the membrane energy change following insertion. 𝜇! = 83.4 
pN/nm2. The size of the vesicle is 𝑅 = 14 nm, the insertion size is 2 nm2 (Fig 1), with 
𝑐#$%& = 0.1 nm-1. 
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Figure S3. Expanding the perturbed area due to the insertion amplifies the changes 
in membrane energy. (A-B) Expanding the perturbed area due to insertion using a 
Gaussian function. (A) Here, the insertion is still modeled as occupying an area of 2 nm2, 
with a spontaneous curvature of 𝑐#$%& = 0.1 nm-1 (dark blue triangles). In addition, the 
membrane directly around the insertion is also modeled as having a non-zero spontaneous 
curvature, decaying with distance according to a Gaussian distribution with 𝜎 = 0.5 nm. 
Teal triangles thus have a lower but non-zero value of 𝑐#$%&(𝑥)	~ 0.004-0.05 nm-1. Lighter 
blue triangles have 𝑐#'()(𝑥)	~	3 × 10*+-7 × 10*,  nm-1, and the remaining surface has 
zero spontaneous curvature. (B) As we increase the spread of the insertion perturbation to 
larger distances (increased 𝜎 ),	 we	 see	 larger	 responses	 in	 the	 membrane	 energy	
change.	The	results	for	 𝜎 =	 0	change	only	the	spontaneous	curvature	of	the	helix-
containing	triangles,	and	are	thus	identical	to the original model. (C-D) Expanding the 
perturbed area as a linear function. (C) The insertion can be modeled as impacting the 
spontaneous curvature of neighboring membrane, in a distance-dependent way, 𝑐#$%&(𝑥) =
𝑐#$%&	[(𝑥 − 𝑥#) 𝜎⁄ + 1], where x is the distance to the insertion zone center 𝑥#, and 𝜎 is 
the width of the spread. (D) As the spread of the insertion region is increased (increased 
𝜎),	we	see	larger	responses	in	the	membrane	energy	change.	 𝑐#$%& =	 0.1 nm-1 and 𝜅 = 
20 𝑘-𝑇. 
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Figure S4. Curvature sensing of ENTH on the cylinder membrane. The experiment 
data of the dissociation constant KD as the cylinder radius changes is the same as Fig 7B, 
or see Fig 2E in ref. [16]. 
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Figure S5. Dependence of the membrane shape change energy, 𝜹, with variations to 
membrane and insertion parameters (𝑹, 𝒄𝟎𝐢𝐧𝐬, 𝜿, 	𝐚𝐧𝐝	𝑨𝐢𝐧𝐬). Based on the comparisons 
of the numerical 𝛿 values with variations in 𝑅, 𝑐0ins, 𝜅, 	and	𝐴$%&, we ultimately end up 

with an empirical fit function 𝛿(𝑅, 𝑐0ins, 𝜅, 𝐴$%&) = −𝜅𝑐#$%&
(𝐴$%&1 [

2
3
+ 𝑞] , with 4 fit 

parameters n, m, p, and q, where only q has dimensions, which match the units of 𝑅*4. 
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The sum of 𝑛 and 𝑚 is also constrained to cancel out units with 𝑅*4, such that 2𝑚 −
𝑛 − 1 = 0. (A) Our data show that 𝛿	 ∝ 	𝜅 regardless of variation in other parameters. (B) 

Our data show that 𝛿	 ∝ 	 b𝑐#$%&c
( . By performing non-linear fitting, we find that 𝑛 = 

1.50±0.10. All errors reported here are standard errors. (C) Our data show that 𝛿	 ∝ 	𝑅*4. 

To define the final two fit parameters, we compare 𝛿/(−𝜅𝑐#$%&
(𝐴$%&1) to 𝑅*4, having 

already fixed n and m, as shown by the y-axis rescaling of 𝛿. Linear fitting then gives a 
slope 1.51±0.11 and y-intercept 0.11±0.008, and thus we have that 𝑝 = 3/2 and 𝑞 =
0.1	nm*4.  (D) Our data show that 𝛿	 ∝ 	 (𝐴$%&)m, where non-linear fitting gives 𝑚 = 
1.25±0.026. (E) Lastly, we find that the magnitude of 𝛿 is typically comparable to the 
energy change due to the insertion, ∆𝐸#, but makes a 10-fold larger contribution for small 
to intermediate vesicles of a curvature similar to the size of 𝑐#$%&.  
 
 

 
Figure S6. Experimentally measured surface coverage of ENTH on vesicles. The 
coverage is defined as 𝑁π𝑟5 (4π𝑅5)⁄ , where 𝑁 is the copy number of ENTH bound on 
the vesicle, 𝑟 = 2 nm is the ENTH size and 𝑅 is the vesicle radius.  
 

 
Figure S7. Influence of the biased initial membrane spontaneous curvature on the 
membrane energy calculation. The membrane composition here in experiments is mainly 
POPC (~90% of total lipids). POPC has a negative spontaneous curvature about −0.05 
nm-1, which means it should prefer the inner leaflet of the small unilamellar vesicle. Since 
lipid rearrangement occurs between the bilayers, some POPC lipids will flip into the inner 
layer from the outer layer, which will make the bilayer spontaneous curvature larger than 



 7 

−0.05 nm-1. Therefore, we ran some simulations with the spontaneous curvature value 
−0.05-0nm-1. (A) Membrane energy of the spherical vesicle as a function of initial 
membrane spontaneous curvature. The Helfrich model gives 𝐸 = 8π𝜅. (B) The membrane 
energy change due to one protein insertion. 𝑅 = 28 nm, 𝜅 = 20 𝑘-𝑇. 
 

 
Figure S8. Energy minimization of the continuum membrane model following 
insertion. Simulation results from a vesicle with 𝑅 = 14 nm and one insertion on the 
surface, 𝑐#$%& = 0.1 nm-1, 𝜅 = 20 𝑘-𝑇. 
 

 
Figure S9. Membrane energy following insertion is not sensitive to constraint choice 
on insertion region. For the edge length constraint method, we tried five different values 
of 𝐾. For the local area constraint method, we used 𝜇" = 250 pN/nm. Simulations were 
carried out with one insertion with 𝑐#$%& = 0.1 nm-1, 𝜅 = 20 𝑘-𝑇, 𝜇! = 83.4 pN/nm2. 
 

 
Figure S10. Second-order Gauss-quadrature is sufficient to accurately integrate 
bending energies. The simulation is carried out on the vesicle of 𝑅 = 28 nm with 𝑐#$%& = 
0.1 nm-1, 𝜅 = 20 𝑘-𝑇, 𝜇! = 83.4 pN/nm2 and 𝜇" = 250 pN/nm. 
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Figure S11. Energy calculations following insertion are not sensitive to the fineness of 
the triangular mesh beyond 3 subdivisions. The triangular mesh is generated by means 
of Loop’s subdivision scheme. The more subdivision times give the finer mesh. 
Simulations here were carried out with the vesicle 𝑅 = 7 nm and one insertion bound.  
 

 

Figure S12. Cylinder membrane model. (A) A smooth triangular mesh for the cylinder 
membrane. (B) Ghost vertices and ghost faces (pink color). The cylinder (bule color) has 
two boundary ends (black solid line), which are constrained by periodic conditions. To 
apply the periodic condition, we introduce ghost vertices and faces beyond the cylinder 
boundary, and the ghost vertices or faces are three rows on each end to ensure that the nodal 
force on every boundary vertex is calculated sufficiently from all its neighbor faces. For 
example, in the figure, all the triangles inside the red dashed hexagon contribute to the 
nodal force of vertex 𝑖 on the boundary, and thus three rows of ghost faces are sufficient. 
The periodic condition requires the two ends of the cylinder have the same neighborhood, 
which means the ghost vertex above the top of the cylinder should be translated from the 
cylinder bottom vertex, and the ghost vertex below the bottom of the cylinder should be 
translated from the cylinder top vertex, as shown by the dashed lines with arrows. For 
example, the position of ghost vertex 𝑃6 is translated from the vertex 𝑃. To do so, we set 
the update of 𝑃6  position is equal to the update of 𝑃 position, ∆𝑥7! = ∆𝑥⃑7 . (C) The 
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energy change of the cylinder membrane following one insertion is not dependent on the 
cylinder length. Here, simulations were run with the bending modulus 𝜅 = 20 𝑘-𝑇 and 
the insertion spontaneous curvature 𝑐#'() = 0.35 nm-1. 
 
 


