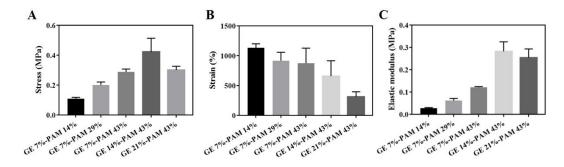
Supporting Information

- 2 Mussel-inspired adhesive gelatin-polyacrylamide hydrogel wound
- 3 dressing loaded with tetracycline hydrochloride to enhance complete
- 4 skin regeneration

1


- 5 Yamei Wang^a, Dongdong Xiao^{b, c}, Lin Quan^a, Hongbin Chai^a, Xiaofeng Sui^a, Bijia
- 6 Wang^a, Hong Xu^a*, Zhiping Mao^a*
- 7 ^aKey Lab of Science and Technology of Eco-textile, Ministry of Education, College of
- 8 Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile
- 9 Science and Technology, Donghua University, No. 2999 North Renmin Road,
- 10 Shanghai 201620, China
- 11 b Department of Urology and Andrology, Ren Ji Hospital, School of Medicine,
- 12 Shanghai Jiao Tong University, Shanghai 200001, China
- 13 ° Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital,
- 14 School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China

16 * Corresponding author

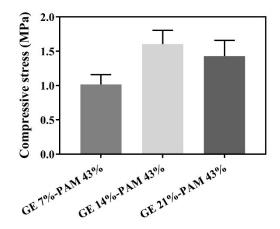
17 Hong Xu, Zhiping Mao.

15

- 18 Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of
- 19 Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile
- 20 Science and Technology, Donghua University, No. 2999 North Renmin Road,
- 21 Shanghai 201620, China
- 22 Tel: +86-21-67792720; Fax: +86-21-67792707;
- 23 E-mail addresses: hxu@dhu.edu.cn, zhpmao@dhu.edu.cn

25 Fig. S1. Mechanical properties of hydrogels with different weight ratio of GE/DI and AM/DI.

26 (A) Fracture stress, (B) fracture strain, and (C) elastic modulus of hydrogels.


27

24

28 Table S1. Mechanical properties of hydrogels with different weight ratio of GE/DI and

29 AM/DI

Bond	GE 7%-PAM	GE 7%-PAM	GE 7%-PAM	GE 14%-	GE 21%-PAM
assignments	14%	29%	43%	PAM 43%	43%
Fracture stress	0.11 + 0.01	0.2 + 0.02	0.20 + 0.02	0.42 + 0.00	0.2 + 0.02
(MPa)	0.11 ± 0.01	0.2 ± 0.02	0.29 ± 0.02	0.42 ± 0.09	0.3 ± 0.02
Fracture strain	1122 + 66 15	015.0 + 140.0	974.4 + 252.7	(59.2 + 257.2	210 5 + 95 5
(%)	1133 ± 66.15	915.9 ± 140.9	874.4 ±252.7	658.3 ± 257.3	310.5 ± 85.5
Elastic	0.020 + 0.002	0.062 + 0.000	0.121 + 0.002	0.202 + 0.042	0.254 + 0.020
modulus (MPa)	0.028 ± 0.003	0.062 ± 0.009	0.121 ± 0.003	0.282 ± 0.043	0.234 ± 0.039

30

Fig. S2. Compressive stress of hydrogels with different weight ratio of GE/DI (AM/DI=43%).

32

33 Table S2. Compressive stress of hydrogels with different weight ratio of GE/DI

34 (AM/DI=43%)

Name	GE 7%-PAM 43%	GE 14%-PAM 43%	GE 21%-PAM 43%
Compressive stress (MPa)	1.02 ± 0.14	1.61 ± 0.2	1.43 ± 0.23