I. ANALYSIS FOR THE YY- AND YZ-COMPONENT OF THE DIFFUSION COMPONENT

In the main document of the manuscript, our analysis focuses on the z-component of the diffusivity tensor. Here, it is extended to two additional components \(D_{yy} \) and \(D_{yz} \). The components related to the advection direction, \(x \), have been excluded, due to the non-affine displacements could not simply be isolated by subtracting the displacement that results from integrating the individual particle velocities. Here, we could argue that the non-constant shear rate introduces a Taylor dispersion that we were not able to eliminate using the mentioned procedure.

As a first step, we examine the particles’ mean squared displacements in the \(yy \)- and \(yz \)-directions (MSD\(_{yy}\) and MSD\(_{yz}\)) as a function of the time-lag \(\tau \). The expressions that describe MSD\(_{yy}\) and MSD\(_{yz}\) are respectively,

\[
\text{MSD}_{yy}(\tau) = \frac{1}{N_k} \sum_{i} (y_i(\tau + t) - y_i(t))^2
\]

\[
\text{MSD}_{yz}(\tau) = \frac{1}{N_k} \sum_{i} (y_i(\tau + t) - y_i(t))(z_i(\tau + t) - z_i(t))
\]

averaged over specific particle ensembles with \(N_k \) particles. The rest of the procedure is carried out as in the manuscript. That means the system is split in vertical direction into 20 blocks of width \(\Delta H = L \) in terms of the particle’s longest size \(L \). Moreover, the particles are tracked for a total time elapsed of \(\tau_T = 120 \) s with a resolution \(\delta \tau = 0.05 \) s.

Fig. 1 shows examples for both a,c) MSD\(_{yy}\)(\(\tau \)) and b,d) MSD\(_{yz}\)(\(\tau \)) outcomes (in log–log scale) for a subset of the sections labeled with \(H \) representing the region height \(z = H \). In addition, the same data but using linear scale are displayed in the insets. The results correspond to the systems a,b) aspect ratio \(\xi = 1.3 \) and inclination \(\alpha = 27^\circ \) and c,d) aspect ratio \(\xi = 2.5 \) and inclination \(\alpha = 30^\circ \). As a guide to the eye, the graphs include continuous lines representing power-law functions with exponent 2 and 1 which stand for the ballistic and diffusive limit, respectively. Similarly to the diffusivity in the \(z \) direction, MSD curves change their behavior close to \(\tau = 1 \) s. In detail, for \(\tau < 1 \) s, the movement of the particles is ballistic; however, although there is reduction of the slopes, the movement remains superdiffusive for \(\tau > 1 \) s. This result is more noticeable in the Fig. 1a) and differs from the obtained ones in the \(z \)-direction. For this reason, in these cases, we expect \textit{a priori} no well-defined diffusivity values.

In any case, Fig. 2a and Fig. 2b exemplify the profiles of \(D_{yy}(z) \) and \(\dot{\gamma}(z) \) (and \(D_{yz}(z) \) and \(\dot{\gamma}(z) \)) normalized by the maximum diffusion coefficient \(D_{max} \) and the maximum shear rate \(\dot{\gamma}_{max} \) for \(\xi = 1.3 \) and \(\xi = 2.5 \), respectively. In both cases, we obtain that local diffusivity values do not correlate with the local shear rate values. Consequently, the simple scaling relation \(D \sim d^2 \dot{\gamma} \) does not seem to be a good choice.
FIG. 1: The mean squared displacements (MSD) vs. τ for the cases a,b) $\xi = 1.3$, $\alpha = 27^\circ$ and c,d) $\xi = 2.5$, $\alpha = 30^\circ$ (both in log-log scales) in the a,c) yy- and b,d) yz-direction. Each curve represents the MSD calculated for each block of base equivalent to the system and width L whereas lines show the powers 1 and 2. In both cases, the inset shows the same but on linear scale.
FIG. 2: Plots of a) D_{yy}/D_{yy}^{max}, b) D_{yz}/D_{yz}^{max} (markers) and $\dot{\gamma}/\dot{\gamma}_{max}$ (curves) against the height z for $\xi = 1.3$ and several inclinations, $\alpha = [26.0, 26.5, 27.0, 27.5, 28.0]^{\circ}$. c) and d) respectively display the same quantities but $\xi = 2.5$ and $\alpha = [29.0, 29.5, 29.0, 29.5, 30.0]^{\circ}$.