Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

Supporting Information

In situ transmission electron microscopy observation of the deformation and fracture processes of an epoxy/silica nanocomposite

Pangpang Wang¹, Ryusei Maeda², Mika Aoki³, Tatsuya Kubozono¹, Daisuke Yoshihara¹, Atsuomi Shundo⁴, Takaya Kobayashi², Satoru Yamamoto³, Keiji Tanaka^{3, 4}, Sunao Yamada¹

- 1. Materials Open Lab., Institute of Systems, Information Technologies and Nanotechnologies, Fukuoka 814-0001, Japan
- 2. Mechanical Design & Analysis Co., Tokyo 182-0024, Japan
- 3. Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan.
- 4. Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.

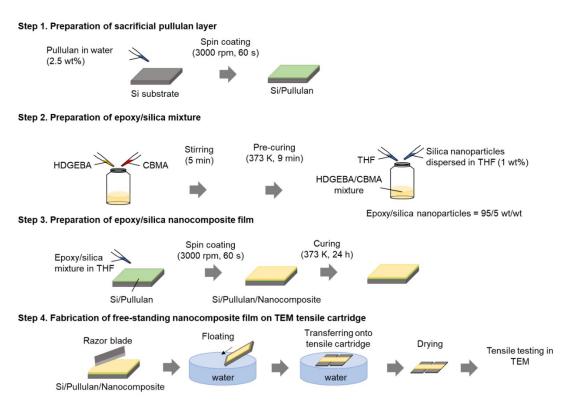


Figure S1. Preparation procedure of free-standing epoxy/silica nanocomposite thin film for *in situ* tensile test in TEM.

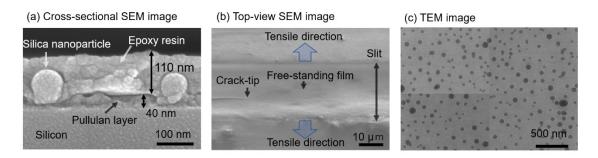


Figure S2. Electron microscopy images of the nanocomposite thin film: (a) Crosssectional SEM image of a nanocomposite film on silicon/pullulan substrate; (b) Topview SEM image of a free-standing nanocomposite film with a pre-existing crack attached on tensile cartridge; (c) TEM image of a free-standing nanocomposite thin film.

Movie S1. A 2 min 7 sec length movie at $4 \times$ speed of the deformation and fracture process of an epoxy/silica nanocomposite film under tensile strain observed using transmission electron microscopy. Scale bar: 1 µm.