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1.- Numerical Simulations 
 
1.1 Construction of a liquid-vapor phase coexistence at equilibrium for the passive 
LJ fluid. 
 
Starting from previous work [1], where the vapour-liquid equilibria of a 2D passive LJ 
fluid is studied by means of Monte Carlo simulations in the Gibbs ensemble, we have 
used the proposed phase diagram as a starting point to get a liquid-gas phase 
coexistence in equilibrium easily. The problem is to generate a liquid-vapor slab that 
remains stable when the activity is introduced. With that goal in mind, we have carried 
out a couple of molecular dynamics simulations in two different ensembles at 
equilibrium for a passive LJ fluid (cut & shifted) with a cut-off range of 2.5𝜎: 

𝑉(𝑟) = 4𝜀 ,-
𝜎
𝑟.

!"
− -

𝜎
𝑟.

#
0 																																									𝑟 ≤ 2.5𝜎 

 
1. We have run classical molecular dynamics in the NPT ensemble [2]  at different 

values of T and P where phase coexistence has been seen previously [1]. In all 
the tests, we start the simulations from the initial configuration shown on the 
left side of Fig. 1, using a square box of 𝐿 = 212𝜎.  After all the simulations 
were analysed, we kept with the case (P,T) where the liquid band was more 
stable.  The most stable band is found at 𝑃 = 0.015 and 𝑇 = 0.42𝜀, and the 
simulation box is modified from the initial square geometry to a rectangular 
box of size 𝐿! = 677.39𝜎 and 𝐿" = 152.83𝜎, 

2. Starting from the output configuration of the previous step (centre snapshot of 
Fig. 1), we have run an MD simulation in the NVT ensemble in order to test the 
stability of the liquid band. In the snapshot at the right of Fig. 1, the final 
configuration of such simulation can be observed. The mean number density in 
the inner part of the liquid slab is 𝜌𝜎# = 0.386. 

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2022



 

 
1.2 Construction of a high-low density phase coexistence with attractive ABPs 
 
Once we have tested the stability of the band of a passive LJ-liquid at equilibrium, we 
introduce the activity to the LJ-liquid systematically.  In addition to the LJ interaction, 
all particles have a self-propulsion velocity and follow equations 1 and 2 of the main 
text. 
  
For the different 𝐹$ values, the temperature 𝑘%𝑇 = 0.42 was kept constant and the 
same initial configuration, which corresponds to the last configuration of the 
equilibrium passive LJ  (right snapshot of Fig. 1), was used.  
 
Similarly to previous studies [3], we have also observed that for the attractive ABP 
(ABP-LJ) system a reentrant phase behavior appears with respect to the band stability. 
For small values of activity we see that the band is stable, as long as Fa < 3 (see Fig. 2). 

 
 

 
 

 
However, if the particles self-propel at medium speed i.e. 3 < Fa < 50, the band melts 
and a homogeneous gas phase is observed. Strikingly, when the self-propulsion velocity 
is increased even further (Fa > 40), phase coexistence emerges again, and a more 
compact band is formed (see Fig. 3). 

 
 
 
 
 
 
 

Fig1.- Graphical scheme of the protocol to get liquid-vapour phase coexistence at equilibrium. Left: initial 
configuration used in the MD simulations in NPT ensemble. Center: final configuration after an NPT 
simulation, at P=0.015 and T=0.42 , and initial configurations for the NVT simulations. Right: final 
configuration after an NVT simulation. In all the simulations N=40000. 

 

Fig 2. Snapshots of the last frame of simulations, using attractive ABPs with Fa = {0.1, 1, 3} respectively. 

Fig 3. Snapshots of the last frame of simulations, using attractive ABPs with Fa = {50, 60, 80} respectively. 



The evolution of the internal energy per particle for the attractive ABP  to high 𝐹$ is: 
 
 

 
 

In summary, we have obtained the phase coexistence for three different systems. In the 
one hand, a system in thermal equilibrium of a passive LJ-particles by using MD 
simulations with help of two different ensembles (Fig. 1). In the other hand, a system of 
attractive ABPs out of equilibrium where the phase coexistence is obtained at low (Fig. 
2) and at high self-propulsion speeds (Fig. 3) of the particles. 
 
1.3 Construction of a high-low density phase coexistence with repulsive ABPs 
 
Additionally, we have run NVT simulations of repulsive ABPs (ABP-WCA) using the 
same simulation box and density, and starting  from the last configuration of the NPT 
simulation at equilibrium, resulting in the formation of a condensed band, as observed 
in Fig. 5.  Note that the bands formed at high speeds are quite similar to those formed 
by MIPS of repulsive ABPs. In this case, particles are purely repulsive with a WCA 
potential: 
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Mean results 

In the following graph, we show the mean density profiles at high Péclet number (𝐹$ >
50)   
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Fig 4. Left panel: Evolution of the internal energy per particle for the attractive ABP (ABP-LJ) system. 

Fig 5. Snapshot of the last frame of a 
simulation, of repulsive ABPs with a WCA 
potential, with 𝐹! = 60, T= 0.42 and ρ = 
0.38.. 



  

 
As we can see at these high activities, the densities of coexistence change with the 
activity. With respect to the densities of the coexisting phases, the effect of increasing 
the activity is equivalent to that of lowering the temperature in an LJ fluid, increasing 
the density of the dense (condensed) phase and decreasing the density of the dilute (non-
condensed) phase.  
 

Dense phase Dilute phase 

  
 

The radial distribution function 𝑔(𝑟) of the dense coexisting phase at high 𝐹$ shows a 
solid-like structure for the first shell, with strong 6-fold correlation of the nearest 
neighbour particles, and a liquid structure at large range. The oscillations of 𝑔(𝑟) shift 
very slightly towards smaller r's when we increase 𝐹! while also slightly increasing its 
structuring. If we compare with the 𝑔(𝑟) of the liquid phase of the non-active LJ we see 
that the high activity significantly pushes the particles towards the repulsive part of 
their interaction potentials. The position of these peaks (and the high average density) 
makes it clear that for these high values of 𝐹! the attractive part of the LJ potential is 
irrelevant, because the neighbors are at distances with very strong repulsion. So the 
mean nearest neighbor (nn) distance ⟨𝑑""⟩ decreases slightly when we increase 𝐹!. In 
the right panel of Fig. 6 we can see that the dense slab has nearly constant density, 

Fig 6. Left panel: The mean density profiles for the ABP-LJ systems. Right panel: The equilibrium coexistent bulk 
densities, black:𝜌" dense phase, red: 𝜌# diluite phase and rreen: 𝜌$%&'()"!*' =

+!,+"
-

 

Fig.7.- Left panel: The radial distribution function of the bulk dense phase of the ABP-LJ, measured in the central 
part of the dense slab. Right panel: the structure factor of the bulk dilute phase. 



very close to the perfect triangular lattice 𝜌 = 2 ,√3⟨𝑑""⟩#/⁄ , so that the crystal defects 
give only a very small correction.  
 
The  density (or mean nn distance) over the crystalline regions of the dense slab pro-
vides a natural scale (at each 𝐹$) that gives an interesting view to the MIPS coexisting 
densities . Fig. 8 presents the densities in LJ units (left), together with the usual analysis 
(as it were a 2D liquid-vapor coexistence with β = 1/8 critical exponent) which may be 
misleading, since the coexisting densities are too different. On the right panel of the fig-
ure, a rather different view appears when we scale the densities with ⟨𝑑((⟩.  The gas 
density follows very well a simple law 𝜌) = 11.1 (⟨𝑑((⟩"𝐹$)⁄ , with 11.1 as the only fit-
ting parameter. Apparently, most of the explored 𝐹$ range is more simply described by a 
’high activity’ approximation, while the ’critical region’ description is much more 
forced (it requires more free parameters, and fits the results too much away from the ap-
parent critical value of 𝐹$). 

 
 

 
Intrinsic line 

Actually, with the level of fluctuation in these 2D "active" simulations and in 2D, the 
most fine-grained methods designed for 3D interfaces are not very practical [4,5,6]. 
What we are using is a "less refined" but more robust version, which has also been used 
on normal liquid surfaces [7,8]. For each analysed configuration, we create a continuous 
“coarse-grained “ density function  𝜌(𝑥, 𝑦) from the convolution of the particle posi-
tions with a Gaussian: 

Fig 8.  Full black circles: coexisting MIPS densities, ABP-LJ results for 50 ≤ 𝐹! ≤ 80 and ABP-WCA results for 𝐹! >
80. Left: in LJ units, and fitted as a 2D critical region, with Ising critical exponent β = 1/8 and two critical values 
𝐹!. = 40 and 43. Right: density scaled in the crystalline density 𝜌. = 2 ,√3⟨𝑑%%(𝐹!)⟩-4⁄ and (dashed lines) their 
fits to +!

+#
= 1 − 60 𝐹!-⁄   and +!

+#
= 9.52 𝐹!⁄ . Open green squares: the hexatic order parameter calculated over the 

crystalline sites in the dense slab, and (full green line) its fit to a critical behaviour with β = 1/8 and 𝐹!. = 48. 
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Then we define the interfacial line𝑥 = 𝜉(𝑦) as that over which  𝜌(𝑥 = 𝜉(𝑦), 𝑦) is at the 
mean value of the two coexisting densities. 
 
                  𝜌(𝑥 = 𝜉(𝑦), 𝑦) = 𝜌&(2345$63 
 
That line is made univaluated (at each side of the slab) by eliminating the small dense 
droplets and gas bubbles (i.e. closed contours of 𝑥 = 𝜉(𝑦),  as well as some -- very few 
--  overhangs). 
 
Then, the Fourier components 𝜉(. can be obtained directly, using the periodic boundary 
conditions along the Y direction.  
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We have checked that the distribution of each 𝜉(. is very accurately Gaussian, with null 

mean value W𝜉(.X = 0 (very long simulation runs are required to good statistical sam-
pling for the lowest q modes), and therefore the interfacial fluctuations are fully de-

scribed by their mean square value WY𝜉(.Y
"
X, that we obtained from 2000 configurations 

separated by 100000 time steps. We get separate statistics for the two sides of the slab 
(’left’ and ’right’ interfaces), to guarantee a good convergence, and both values may be 
employed to improve the statistics of the final results. 
 
The upper limit 𝑞9 =

":
;.
𝑛9 ≥ [𝑞'[ used in the Fourier series controls how closely the 

nominal interfacial line 𝑥 = 𝜉(𝑦) follows the position of the particles. To study how the 
intrinsic line depends on the value of 𝑞9, we show in Fig. 9 an enlarged view of the 
surface on the right side of Figure 1 in the main article. As our intrinsic line is a 
continous function, our choice of 𝑞9 is very simple; it is the smallest value of 𝑞9 above 
which the setting ceases to depend appreciably on 𝑞9, 𝑛9 = 12 in our case. 



  
Fig 9.  The intrinsic Surface of the ABP-LJ with F/ = 55 
and α = 2 for the Gaussian coarse-grained density. 
The black full-line corresponds to our preferred choice 
q0σ = 0.5  of the upper cutoff in the Fourier series. 
The dashed lines shows the effects of changing q0; 
q0σ = 0.25 (blue) and q0σ = 1.75 (red). 

Fig. 10. The intrinsic Surface of the ABP-LJ with F/ =
55 and  q0σ = 0.5  as the upper cutoff in the Fourier 
series. The black full line correspond to our preferred 
choice α = 2 for the Gaussian coarse-grained density. 
The dashed lines show   α = 1 (blue) and α = 3 (red) 

 
 
To study the dependence of the intrinsic line with the value of 𝛼 we show in Fig.10 an 
enlarged view of the liquid-vapor interface on the right of Figure 1 in the main article. 
The choice of the optimal value of 𝛼 is more delicate than the choice of the optimal 
value of 𝑞9, so in the following sections we will analyze the dependence of the intrinsic 
profile and the spectrum of fluctuations with the choice of 𝛼. 
 
 



Intrinsic density profile 
 
As in the thermal equilibrium of fluid interfaces, the mean density profiles shown previ-
ously should depend on the transverse size of the system 𝐿', due to the blurring from lo-
cal displacements of the interface (”capillary waves” CW). In 2D the interfacial width 
grows as	𝐿' (in contrast with the much weaker effect 	𝑙𝑜𝑔P𝐿'R in 3D), so that there is 
not a thermodynamic limit (𝐿' → ∞) for these mean density profiles. Borrowing the 
concepts of the Capillary Wave Theory (CWT) for equilibrium, a true thermodynamic 
limit may be obtained only for the intrinsic density profiles, defined as: 

𝜌<(𝑦) = :;𝛿P𝑥 − 𝑥& + 𝜉(𝑦&)R
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In the next figure, we can see that the intrinsic profile depends only weakly on the 
value of 𝛼 used. We have selected a value of 𝛼 = 2. 
 

 
 

If we compare the intrinsic profiles with the mean, the 𝜌0(𝑥) (see  Fig. 12) give a 
sharper (and size independent) view of the interfacial region, with a more rapid decay 
on the ’gas’ side than on the dense side of the interface. The variation of 𝜌0(𝑥) towards 
the bulk values is clearly slower at the dense side of the interface, with a rather thick 
interfacial region, x ≈ 15 − 20 particle diameters, over which the density is already high 
but still gradually increasing. On the ’gas’ side the decay is also slow for the mean 
density for all values of 𝐹!, but 𝜌0(𝑥) decays faster, over two or three particle diameters. 
The fact that the intrinsic profiles are so clearly asymmetric suggests that the loss of 
phase separation is not due to the normal mechanism ("vapor bubbles" in the liquid 
and "liquid drops" in the vapor) but rather due to the loss of hexatic order, because 
the most relevant order parameter is the one that is only in one side. It is striking that, 
in the length units of the nearest neighbour distance ⟨𝑑"1⟩(𝐹!)  and over the entire 
range of explored 𝐹! values , we get very similar density profiles, which collapse in a 

Fig. 11 Intrinsic profiles for Fa=75  with q0σ = 0.5  as the upper cutoff in the Fourier series  for the system ABP-
LJ, using values of α = 1 (red), α = 2 (blue) and α = 3 (green). Units of the LJ diameter are used.  



single curve in terms of (𝜌0(𝑥) − 𝜌2 − 𝜌3) (𝜌2 − 𝜌3)⁄ , as we can see in Fig.3 of the main 
text. 
 

 

 
 

Line tension from the fluctuations of the interfacial line 
 
We shift now to the second part of the evidence extracted by the intrinsic analysis of the 
interface. The observed Gaussian distribution for the Fourier amplitudes 𝜉=.of the inter-
facial line 𝑥 = 𝜉(𝑦) may be interpreted as that in an effective thermal equilibrium en-
semble, with a line Hamiltonian 𝐻`𝜉=4a that may be represented in terms of a line ten-
sion 𝛾7times the line length L[ξ], as a functional of the line shape, and expanded up to 
quadratic order in the Fourier amplitudes 𝜉=., i.e. 
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The generalization to include curvature contributions, with bending modulus 𝜅 , in 
terms of a wavevector dependent line (surface) tension 𝛾P𝑞'R = 𝛾7 + 𝜅𝑞'" +⋯ leads to 
an effective interfacial Hamiltonian, weighted with an effective temperature: 

𝛽𝐻`𝑞'a = 𝐿' f𝛽𝛾7 +
1
2 ; 𝛽𝛾P𝑞'R𝑞'" Y𝜉=.Y
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that should give the independent Gaussian probability distributions for each Fourier am-
plitude an (effective) Boltzmann probability distribution, that for long wavelengths give 
a probability exp(𝛽𝐻[𝜉]) for any shape of the interfacial line, just in terms of the line 
length and the single parameter 𝛽𝛾7, see panel (b) in Fig. 7. 

Fig. 12. Mean (dashed line) and intrinsic profiles (full lines) for Fa=55 (blue), 65 (red) and 75 (green) for the 
system ABP-LJ. Units of the LJ diameter are used. 



Therefore, the mean square valuesWY𝜉=.Y
"
X obtained from the simulations (for any 𝑞' ≠

0) give directly:𝛽𝛾P𝑞'R =
!
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 to get 𝛽𝛾7 as the 𝑞 = 0 extrapolation, and 𝛽𝜅 

from a quadratic fit at low 𝑞. For systems in true thermal equilibrium, this method to get 
𝛽𝛾7 is well tested and quite robust, while the estimation of the bending modulus is more 
subtle and depends on a (good) definition for the interfacial shape, from the positions of 
the particles. The results obtained for the MIPS interface are presented in the next fig-
ure:  

 

 
As we can see, as in thermal systems, for the ABP the 𝛾6 is very well determined by the 
method, but the bending depends drastically on the details of the procedure; in 
particular, it varies a lot with the choice of the value of 𝛼. That is why in this work we 
have only focused on the discussion about 𝛽𝛾6 and have avoided any discussion with 
respect to 𝜅, given its dependence on the choice of 𝛼. However, a rough estimate of 
the ratio  𝜅 𝛾6~	18 ± 5⁄  allows us to state that corrugations of interfacial line with 
wavelengths longer than ∼ 100 particles diameters are quantitatively well described 
(with accuracy better than 90%) by the ’macroscopic equilibrium’ prediction based 
only on the value of 𝛽𝛾6 multiplied by the line length; i.e. the observed fluctuations in 
the shape of the MIPS interface have a probability distribution 𝑃[𝜉] ∝ 𝑒𝑥𝑝(−𝛽𝛾6𝐿[𝜉]), 
with an exponential decay in terms of the increase in the length of the line. 
 
Note that the analysis of the fluctuations of the MIPS interfacial line does not give 𝛾7 
but 𝛽𝛾7 = 𝛾7 𝑘𝑇355⁄ , in terms of an effective temperature, which does not represent the 
’normal’ (and nearly irrelevant temperatures) set in the Brownian dynamics. But even 
without assuming an effective temperature, some interesting results appear from the 
analysis of 𝛽𝛾7. Our results should be regarded more as an ”effective thermodynamic” 

Fig.13. The function- 1
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s   with 𝑞8𝜎 = 0.5  as the upper cutoff in the Fourier serie  for the system APB-LJ 

with 𝐹! = 75. Units of the LJ diameter are used. Red line: 𝛼 = 1, blue line: 𝛼 = 2 and green line: 𝛼 = 3. The 
dashed lines are the fit to 𝛾,𝑞94 = 𝛾: + 𝜅𝑞9- in the range 0 < 𝑞9 < 0.15 



than a ”mechanical” calculation of the line tension. Nevertheless, at least in respect to 
its sign, we are sure to get 𝛾7 > 0, otherwise the interface would be unstable, and the 
method measures precisely its stability with respect to the fluctuations under stationary 
MIPS. Moreover, our approach has the advantage to get 𝛽𝛾7through a direct observa-
tion, within a well-tested method for thermal equilibrium interfaces, and had been used 
previously by Patch et al ref. [9]. 
 
 

𝐹$ 𝛽𝛾7
<(5 𝛽𝛾7

C9D 
50 (LJ) 0.0437 0.0490 
52.5 (LJ) 0.0534 0.0542 
55 (LJ) 0.0586 0.0541 
57.5 (LJ) 0.0618 0.0661 
60 (LJ) 0.0584 0.0712 
60 (WCA) 0.0681 0.0646 
65 (LJ) 0.0664 0.0748 
70 (LJ) 0.0707 0.0769 
70 (WCA) 0.0842 0.0790 
75 (LJ) 0.0798 0.0883 
80 (LJ) 0.0846 0.0879 
80 (WCA) 0.0868 0.0876 
90  (WCA) 0.0961 0.0844 
100 (WCA) 0.0915 0.0941 
110  (WCA) 0.0858 0.0881 
120  (WCA) 0.0836 0.0732 

A summary of our results is given in the table, where the first column represent the 
value of Fa for either LJ or WCA, the second column  𝛽𝛾7

<(5	and	the	third	column	
𝛽𝛾7

C9D	
	



 
Hexatic order parameter 
 
The triangular lattice coordination in the dense slab is measured by the local hexatic or-
der parameter: 

𝜂E = ;
𝑒𝑥𝑝(6𝑖𝜃F)
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Where 𝜃F is the orientation of vector 𝑟EF = 𝑟F − 𝑟E for the neighbors of particle j. 
 
In the next two figures we can see the hexatic order parameter 𝜂 = ∑ 𝜂EE 𝑁⁄ = 𝜂- + 𝑖𝜂' 
(one point for each configuration) represented as a vector (and the histogram of its 
square module that gives the mean value used in Fig. 5 of the main paper). ABP-LJ 
simulations at 50 < 𝐹$ < 80 and ABP-WCA systems at 𝐹$ ≥ 80 are shown in Fig. 14 
and 15, respectively. As you can see at high 𝐹$, a large and empty "doughnut shape" is 
formed, with a strong hexatic order whose direction (with respect to the slab axes) 
changes throughout the simulation. For lower 𝐹$the "doughnut shape " becomes smaller 
and "filled", because the global hexatic order of each configuration is reduced: grains 
appear with different orientations, separated by disclinations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



LJ. 𝐹$ = 50 LJ. 𝐹$ = 55 

  
LJ. 𝐹$ = 60 LJ. 𝐹$ = 65 

  
LJ. 𝐹$ = 70 LJ. 𝐹$ = 75 

  

 

Fig.14.- The real part (𝜂;) versus the imaginary part (𝜂9)  of the complex local hexatic order parameter of the 
ABP-LJ with 50 < 𝐹! < 80 at the inner part of the dense slab (one dot for each configuration).  The blue lines are 
the histograms of the module |𝜂| whose integral gives the mean value of ⟨|𝜂|⟩ represented in figure 5 of the main 
article. 
 

 



 
WCA. 𝐹$ = 80 WCA. 𝐹$ = 90 

  
WCA. 𝐹$ = 100 WCA. 𝐹$ = 110 

  
WCA. 𝐹$ = 120  

 

 

 Fig.15.- The real part versus the imaginary part of the complex local hexatic order parameter for the ABP-WCA 
with 80 < 𝐹! < 120., at the inner part of the dense slab. The blue lines are the histograms of the module |𝜂| 
whose integral gives the mean value of ⟨|𝜂|⟩ represented in figure 5 of the main article 

 



Time correlations of the Fourier amplitudes of the intrinsic 
line. 
Finally, we have studied the exponential decay time of the auto-correlation of the Fou-
rier amplitudes of the intrinsic line: 

𝑐(𝑡) = �𝜉=(𝑡7)𝜉.=(𝑡 − 𝑡7)� = W[𝜉=[
"X 𝑒.2 G5⁄  

 
The typical time scale for interfacial fluctuations is set by the active force 𝐹$ (as it 
would be set by 𝑘%𝑇 in a thermal equilibrium system) and the linear dependence with 
𝑞' is compatible with the limit of overdamped dynamics. The required simulation times 
to explore the steady state of a MIPS slab would be proportional to 𝐿' 𝐹$⁄ , to allow for 
good statistical sampling of the slowest (𝑞' = 2𝜋𝑛' 𝐿'⁄ ) interfacial fluctuations. 
  
As we can see in the next figures the numerical results can be well fitted by an exponen-
tial decay. 
 

  

 
In the next figure we show the exponential decay time of the auto-correlation of the 
Fourier amplitudes of the intrinsic line 𝜏P𝑞'R for several values of 𝐹$: 

Fig.16.- Auto-correlation of the amplitudes of the intrinsic lines for the ABP-LJ system with 𝐹! = 60 and 𝛼 =
2.	Left panel: 𝑛9 = 2, right panel: 𝑛9 = 3. The time unit is 2000 times the time step. Inf surface(blue), Sup (red). 



 
 

 
As we can see our simulations seem to give a 𝜏P𝑞'R ∝ 	𝑞'𝐹$  behavior while Cates' 
prediction for capillary wave decay times is 𝜏P𝑞'R ∝ 	𝑞'I𝐹$, see ref. [10]. 
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