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S-1. DETAILED MICROSCOPIC MODEL AND ADIABATIC ELIMINATION OF FAST VARIABLES

We derive in this section a detailed microscopic expression for the energy of the half-sarcomere, based on the
schematic in Fig. S-1. It will then be simplified by an adiabatic elimination of some fast variables to justify the
model (1), which we use for our calculations.

Suppose that the size of the half-sarcomere is l(t), which is defined as the distance between the Z-disc and the
M-lines. The variable s(t) is the distance between the Z disc and the fist actin monomer forming a cross-bridge, while
u(t) is the distance between the M line and the position of the closest cross-bridge (which is the furthest from the Z
disc). The index i labels the cross-bridges from the closer to the Z disc to the furthest, and ∆ is the distance between
cross-bridges which we assume constant. Finally the variable xi, defined in the main text, is the configuration of the
cross-bridge.
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FIG. S-1: Schematic representation of a single thick filament and a single thin filament interacting though several
cross-bridges. The myosin heads close to the thin filament are those which, forming cross-bridges, play a role in the

phases 1 and 2 of the transient response.

Considering thin and thick filaments as elastic, and the myosin heads as fixed to their actin binding site (we are
modeling the system at timescales at which the binding and unbinding are negligible), we can write the energy of
interacting thin and thick filaments as:
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2
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2
]
, (S-1)

where N is the number of cross-bridges, s0 and u0 are the rest values of s and u (when there are no forces stretching
them), and the stiffnesses of the thin and thick filaments are respectively κa and κm. Then the first two terms are the
elastic potential of thin and thick filaments, while the last term represents the cross-bridges. It includes the potential
V (xi), described in the main text, and an elastic coupling between myosin heads and the corresponding actin binding
sites whose locations, for the i-th cross-bridge are, respectively, l−u−∆ (N − i)−xi and s+ ∆ (i− 1). The potential
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describing this interaction is periodic (see Fig. S-1), since myosin heads can bind to each actin site, but since in our
description we neglect detachment of the myosin heads, we can consider each myosin fixed to an actin monomer, and
approximate the periodic potential with a quadratic one with stiffness κc.

Since the variables s(t) and u(t) describe the deformation of the macroscopic filaments, we can assume that they
relax instantaneously [1, 2] and therefore eliminate them adiabatically. This procedure implies neglecting the dynamics
of their relaxation and presumes that they are always relaxed at the energy minimum. That means that their values
at each time are obtained from the relations ∂E

∂s = 0 and ∂E
∂u = 0, which give the values:

s = s0 +
N κc κm (l − s0 − u0 −∆ (N − 1)− 〈x〉)

N κm κc + κa κm +N κc κa
(S-2)

and

u = u0 +
N κc κa (l − s0 − u0 −∆ (N − 1)− 〈x〉)

N κm κc + κa κm +N κc κa
, (S-3)

to be substituted back in (S-1). After that, defining κf = κa κm
κa+κm

as the combined elasticity of thin and thick filaments,

we obtain (1) which also implies substituting the value of y given in (2). In that relation z = l− s0 − u0 −∆ (N − 1)
is the difference between the actual half-sarcomere length and its value when all cross-bridges are in the pre-power
stroke state and the sarcomere does not generate force.

We notice that although this energy has been derived for a single pair of thin and thick filaments, it can also be used
for a half-sarcomere, which can be seen as a collection of thin and thick filaments joined together at the Z disc and M
line respectively. Since the values of l, s and u is the same for each thick-thin filament pair, this is achieved simply
by rescaling N by the number of thick or thin filaments, in such a way that it becomes the number of cross-bridges
in a half-sarcomere.

S-2. DERIVATION OF THE FOKKER-PLANCK EQUATION

We start from the Langevin equations for the xi:

ẋi = −∂ E({xi}, z, t)
∂ xi

+ ξi = −∂ H({xi}, z, t)
∂ xi

+ ξi , (S-4)

where ξi is a Gaussian noise with 〈ξi〉 = 0 and 〈ξi(t) ξj(t′)〉 = (2/β) δ(t − t′) δij . If pN ({xi}; z, t) is the N -body
distribution function, which is also a function of time and of the value z, the Fokker-Planck equation that describes
its evolution is

∂pN ({xi}; z, t)
∂t

=

N∑
i=1

∂

∂xi

[
∂H

∂xi
+

1

β

∂

∂xi

]
pN ({xi}; z, t) , (S-5)

where, since z is a macroscopic variable, we considered it deterministic and neglected its fluctuations. The correlations
between xi are of order of 1/N for systems with mean-field coupling [6, 7], so for large N the N-body distribution
function can be approximated as:

pN ({xi}; z, t) ' ΠN
i=1 p(xi; z, t) , (S-6)

where p(xi; z, t) is the one-body distribution function. Integrating (S-5) in all the variables xi except one gives (8).

S-3. FLUCTUATION-DISSIPATION RELATION

We derive in this section the relation between χxx(t), defined in (14), and the single element correlation function
Sxx(t). Since ps is a stationary solution of (8), we have:

∂

∂x
ps = β

(
∂V

∂x
+ x− 〈x〉+ λfz

1 + λf

)
ps . (S-7)

Furthermore using the definition of L given in (12) and (S-7), we can show:

Lxps =
1

β

∂ps
∂x

, (S-8)
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so that using this relation in the definition of χxx, we obtain:

χxx(t) = −βΘ(t)
d

dt

∫
dxx eL t x ps(x) = −βΘ(t)

d

dt

∫
dx dx′ x eL t δ(x− x′)x′ ps(x′) = −βΘ(t)

dSxx
dt

, (S-9)

where the last equality is justified by the fact that eL t δ(x − x′) is the probability of being at the state x at time t,
provided that at time 0 the system was at the state x′, for a system whose evolution is described by L.

S-4. AUTOCORRELATION OF A SINGLE CROSS-BRIDGE

The quantity Sxx(t) is the autocorrelation function of a single cross-bridge in the stationary bistable potential
U(x, z) defined in (10). To calculate it we use the approximation of high barrier, considering that x0 and x1 are the
minima of the wells of the potential U , and xM the local maximum between them, and define the probability of being
in each of the two wells as a function of time as:

p0(t) =
1

Z

∫ xM

−∞
dx px(x, t) and p1(t) =

1

Z

∫ ∞
xM

dx px(x, t) , (S-10)

where px(x, t) = px(x, t; 〈x〉s, z) is the probability density for the stochastic motion of a single element in the potential
U at fixed 〈x〉s and z. The dynamics for the evolution of p0,1 is given by:

dp0(t)

dt
= −dp1(t)

dt
= −r01 p0(t) + r10 p1(t) (S-11)

with r10 and r01 that are the rates of transition between wells [3]:

r01 =

[
β ps0

∫ x1

x0

dx p−1s (x)

]−1
and r10 =

[
β ps1

∫ x1

x0

dx p−1s (x)

]−1
, (S-12)

where ps0,1 are the equilibrium values of p0,1(t) obtained substituting ps to px(x, t) in (S-10).
In the high barrier approximation the integrals including ps, over a region of the system, can be performed over

the whole space if we choose between the approximations:

U(x) '


U(x0) + U ′′(x0) (x− x0)2 if x ∼ x0
U(x1) + U ′′(x1) (x− x1)2 if x ∼ x1
U(xM )− |U ′′(xM )| (x− xM )2 if x ∼ xM

, (S-13)

the one for which the value of the integrand has its maximum in the region of integration.
In this approximation Sxx can be written as [4, 5]:

Sxx(t) ' 〈x(t)x(0)〉wells +
∑
i=0,1

pSi 〈x(t)x(0)〉i , (S-14)

where the first term is the autocorrelation function of the dynamics of the probabilities (S-11):

〈x(t)x(0)〉wells ' l2U e
− t
τx , (S-15)

where lU is the variance of the system characterized by the two states x0 and x1 with probabilities p0 and p1, and:

τx =
1

rab + rba
. (S-16)

The second term is a sum of the autocorrelations within each single well, whose timescales are 1/U ′′(x0,1) � τx.
So we can define τ0 ' 1/U ′′(x0,1) and write this term as d2 exp−t/τ0, where d is the amplitude of fluctuations in
each single well, weighted by the probability of being in such well. The values of these quantities for physiological
parameters, in dimensionless units, are: lU ' 0.0516, d ' 0.0123, τx ' 7753 and τ0 ' 0.017, and their analytical
forms are given in sec. 3.
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