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S1. Core-shell particle characterization 
The size of the gold core of the core-shell (CS) microgel particles was determined with Transmission Electron 

Microscopy (TEM, FEI Tecnai 20 (type Sphera)). Fig. S1a shows a representative TEM images of the core-shell particles, 
where the dense gold core (black centres) can be clearly distinguished from the hydrogel shell (light grey corona). Note 
that due to drying effects, the shells have collapsed into a pancake shape resulting in different sizes and the gold core 
to appear off-centre. Some of the microgel particles were found to not contain a gold core but these constitute less 
than 0.1% of all particles. Using ImageJ particle analysis the gold core size was determined from the area of the cores in 
the TEM images for more than 1000 particles, assuming a spherical shape (Fig. S1b). The average gold core radius was 
found to be Rcore = 29.1 ± 4.2 nm.  

The size of the CS microgels dispersed in water over a temperature range of T = 15 – 50 °C was determined from a 
0.1 wt. % dispersion with dynamic light scattering (DLS) (Litesizer 500, Anton Paar, 175°, λ = 660 nm) with 3 
measurements of 60 s and cumulant analysis fit. Fig. S1c shows the hydrodynamic radius Rh found for each temperature. 
The CS microgels decrease in size from Rh = 236.6 nm at 15 °C to Rh = 151.1  nm at 50 °C, which indicates a 75% volume 
decrease over the full temperature range. With a sigmoidal fit the VPTT transition was found at T = 32.3 °C, which is in 
agreement with typical VPTT values for aqueous PNIPAM microgels.1 In addition, the zeta-potential ζ was determined 
from electrophoretic measurements. Fig. S1d shows ζ over the full temperature range and indicates that ζ decreases 
from ζ ~ -10 mV to ζ ~ -30 mV as the temperature is raised from T = 20 °C to T = 40 °C caused by the PNIPAM shell 
collapse and increase of surface charges.  

 

Figure S1. (a) Representative TEM images of the core-shell microgels with a gold core and hydrogel shell. (b) Size distribution of Rcore. (c) Hydrodynamic radius Rh with 
sigmoidal fit (red line) and (d) the zeta-potential of the CS microgels in the range of T = 15 – 50 °C. Error bars represent measured polydispersity index (c) and standard 
deviation (d).  

  



S2. Volume fraction determination 
Particle dispersions were prepared at 0.5 wt% and 12 wt%. The temperature dependent volume fractions ϕeff (T) were 
determined from the number density, N,  based on interparticle distance, a,  extracted from the Bragg peak position in 
the SAXS patterns in the full crystallized state of the 12 wt% sample and the CS particle volume. For this we assume an 
overall FCC lattice and base the particle volume on the hydrodynamic radius, Rh(T), as measured with the DLS (Fig. S1c). 
The effective volume fraction is calculated according to:  
 

𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒(T) =  𝑁𝑁𝑉𝑉𝐶𝐶𝐶𝐶 = (𝑉𝑉𝐹𝐹𝐶𝐶𝐶𝐶 4⁄ )𝑉𝑉𝐶𝐶𝐶𝐶(T) = ��2𝑎𝑎 √2⁄ �
3

4� � (4 3⁄ 𝜋𝜋𝑅𝑅ℎ(T)3), (S1) 

where Vcs(T) is the CS particle volume controlled by temperature, and VFCC is the fcc unit cell volume. At T = 38 °C we 
find a = 490 nm and Rh = 165.8 nm, resulting in ϕeff = 0.23. Table S1 shows an overview of the changing ϕeff with 
temperature based on this calculation. This shows that at T = 20 °C with Rh = 228.9 nm the system has a volume fraction 
of ϕeff = 0.60. By correcting for wt% we can extract ϕeff for the 0.5 wt% sample resultin in ϕeff = 0.025 at T = 20 °C and 
ϕeff = 0.010 at T = 38 °C. 

S3. Temperature controlled sample holder 

Figure S2 . Photographs of (a) one part of a copper sample holder that had an cavity into which the flame sealed capillary 
(4 × 0.2 × 50 mm3, internal dimensions, Vitrocom) with CS particle dispersion fitted tightly, (b) the full copper sample 
holder with capillary mounted onto the Peltier element, (c) side view of sample holder in vacuum tube.  
 
  



S4. Scattering from the dilute sample 
We investigated the CS microgels in the dilute state with a concentration of 0.5 wt. % corresponding to a volume 

fraction ϕeff(20 °C) = 0.025. Measurements were performed in the temperature range of 25.0 °C < T < 50.0 °C. Details 
on the Ultra-Small Angle X-ray Scattering are given in Experimental section of the main text. 

The theoretical description of the X-ray scattering is given according to the literature.2,3 The scattered intensity in 
kinematical approximation from a dilute sample, where interference between scattering from different particles can be 
neglected (i.e. the structure factor S(q) ≈ 1) can be described as2  

𝐼𝐼(𝑞𝑞) = 𝑁𝑁∆𝜌𝜌2𝑉𝑉2𝑃𝑃(𝑞𝑞) , (S2) 

where N is the number of illuminated particles in the scattering volume, 𝛥𝛥𝜌𝜌 = 𝜌𝜌 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠   is the scattering contrast 
(the electron density difference between the particles and medium (solvent)), V is the volume and 𝑃𝑃(𝑞𝑞) = |𝐹𝐹(𝑞𝑞)|2 the 
form factor of a single microgel. 

The form factor amplitude for a homogeneous sphere with the radius R is2 

𝐹𝐹1(𝑞𝑞,𝑅𝑅) =
3[sin(𝑞𝑞𝑅𝑅) − 𝑞𝑞𝑅𝑅cos(𝑞𝑞𝑅𝑅)]

(𝑞𝑞𝑅𝑅)3 , (S3) 

The polydispersity of the particles can be introduced by averaging over the particle radius distribution. For the normal 
size distribution, the probability density is 

𝐷𝐷(𝑅𝑅, 〈𝑅𝑅〉,𝜎𝜎𝑅𝑅) =
1

�2𝜋𝜋𝜎𝜎𝑅𝑅2
exp �−

(𝑅𝑅 − 〈𝑅𝑅〉)2

2𝜎𝜎𝑅𝑅2
� . (S4) 

where <R> is the mean radius and σR is the standard deviation. Then, the scattered intensity can be expressed as3 

𝐼𝐼(𝑞𝑞) = 𝑁𝑁∆𝜌𝜌2 � 𝐷𝐷(𝑅𝑅)𝑉𝑉2(𝑅𝑅)|𝐹𝐹1(𝑞𝑞,𝑅𝑅)|2𝑑𝑑𝑅𝑅 .
∞

0

 (S5) 

The form factor amplitude for a core-shell particle can be obtained by a proper weighting of the partial amplitudes 
from the spherical core and shell as3  

𝐹𝐹2(𝑞𝑞,𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 ,𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠) ==
(∆𝜌𝜌𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 − ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)𝑉𝑉(𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒)𝐹𝐹1(𝑞𝑞,𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒) + ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑉𝑉(𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)𝐹𝐹1(𝑞𝑞,𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)

(∆𝜌𝜌𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 − ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)𝑉𝑉(𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒) + ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑉𝑉(𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)
 , (S6) 

where Rcore and Rshell are the radii, and Δρcore and Δρshell are the scattering contrasts of the core and shell, respectively. 
The particle volume V(R) in this case is equal to the sphere volume 𝑉𝑉(𝑅𝑅) = 4

3
𝜋𝜋𝑅𝑅3. 

By analogy, the polydispersity can be taken into account if one considers the core and shell radii distributions. Then, 
the resulting scattered intensity can be defined as 

𝐼𝐼(𝑞𝑞) = 𝑁𝑁� � 𝐷𝐷�𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 , 〈𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒〉,𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐷𝐷�𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠 , 〈𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠〉,𝜎𝜎𝑅𝑅𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑒𝑒�
∞

0

∞

0

× 

× [(∆𝜌𝜌𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 − ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)𝑉𝑉(𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒) + ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑉𝑉(𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)]2|𝐹𝐹2(𝑞𝑞,𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 ,𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)|2𝑑𝑑𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠 

(S7) 

where 〈𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒〉 and 〈𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠〉 are the mean radii and 𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝜎𝜎𝑅𝑅𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑒𝑒  are the standard deviation of the radii of the core 
and shell, respectively. 

We define an effective form factor for polydisperse core-shell particles as  

𝑃𝑃𝑐𝑐𝑠𝑠(𝑞𝑞) =
1

〈(∆𝜌𝜌𝑉𝑉)2〉� � 𝐷𝐷�𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 , 〈𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒〉,𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐷𝐷�𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠 , 〈𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠〉,𝜎𝜎𝑅𝑅𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑒𝑒�
∞

0

∞

0

× 

× [(∆𝜌𝜌𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 − ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)𝑉𝑉(𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒) + ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑉𝑉(𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)]2|𝐹𝐹2(𝑞𝑞,𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 ,𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)|2𝑑𝑑𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠 

(S8) 

where 



〈(∆𝜌𝜌𝑉𝑉)2〉 = � � 𝐷𝐷�𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 , 〈𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒〉,𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐷𝐷�𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠 , 〈𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠〉,𝜎𝜎𝑅𝑅𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑒𝑒�
∞

0

∞

0

× 

× [(∆𝜌𝜌𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒 − ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)𝑉𝑉(𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒) + ∆𝜌𝜌𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑉𝑉(𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠)]2𝑑𝑑𝑅𝑅𝑐𝑐𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑𝑅𝑅𝑠𝑠ℎ𝑒𝑒𝑠𝑠𝑠𝑠. 

(S9) 

We fitted the radially-averaged intensity profiles of the diffraction patterns from the dilute samples shown in 
Fig. S2a,b. We used the polydisperse core-shell form factor given in Eq. S7 multiplied by the scaling parameter I0:  

𝐼𝐼(𝑞𝑞) = 𝐼𝐼0𝑃𝑃𝑐𝑐𝑠𝑠(𝑞𝑞) (S10) 

The scattering contrast values were calculated in respect to water with the electron density 𝜌𝜌𝐻𝐻2𝑂𝑂 = 335 nm-3. The gold 
core electron density was considered to be ρAu = 4661 nm-3. This gives a core scattering contrast of Δρcore = 4326 nm-3 
which was fixed in the fitting procedure.4 All other parameters, namely, the scaling parameter I0, the shell scattering 
contrast Δρshell, the mean core (⟨Rcore⟩) and shell radii (⟨Rshell⟩) and their standard deviations 𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝜎𝜎𝑅𝑅𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑒𝑒 , 
respectively, were used as fitting parameters to fit the intensity profiles at different temperatures T. Two examples of 
the fit at two characteristic temperatures of T = 25.0 °C and T = 50.0 °C are shown in Fig. S2c,d. By that, we extracted 
these parameters for the dilute sample measured at different temperatures in the range of T = 25.0 – 50.0 °C. The 
extracted parameters are shown in Fig. S3. 

Figure S3. (a) Radially averaged intensity from the dilute sample at different temperatures in the range of T = 25.0 – 50.0 °C and (b) magnification of low-q area 
showing the change in the shell scattering. The error bars are omitted for clarity. (c,d) Examples of the measured intensities (blue lines) and the best fits with the core-
shell model. for the two extreme temperatures: (c) T = 25.0 °C and (d) T = 50.0 °C. Inset in (c) shows the model parameters used for fitting.  

Figure S4. Evolution of the extracted parameters for the core-shell microgels with the temperature. (a) The mean gold core radius ⟨Rcore⟩ and (b) its standard deviation 
𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (c) mean shell radius ⟨Rshell⟩, (d) its standard deviation 𝜎𝜎𝑅𝑅𝑠𝑠ℎ𝑐𝑐𝑒𝑒𝑒𝑒, and (e) shell scattering contrast Δρshell.  



S5. Fluid structure factor 
We now turn to the densely packed microgel sample with the concentration of 12 wt. % (an effective volume fraction 

ϕeff(20 °C) = 0.60). Due to the volume phase transition behaviour of the microgels, this sample will possess a significantly 
reduced effective volume fraction at high temperatures. Here, the sample reveals a typical fluid-like intensity profile, as 
shown in the main text in Fig. 3d and Fig. 6d. One of the analytically calculated structure factor models for a fluid is a 
hard-sphere model in the Percus-Yevick approximation.3 In this model, the particles interact with the hard-sphere radius 
RPY and have a hard-sphere volume fraction ϕPY. Then, the structure factor can be expressed as  

𝑆𝑆(𝑞𝑞) =
1

1 + 24𝜙𝜙𝑃𝑃𝑃𝑃
𝐺𝐺(2𝑞𝑞𝑅𝑅𝑃𝑃𝑃𝑃)

2𝑞𝑞𝑅𝑅𝑃𝑃𝑃𝑃

, (S11) 

where 

𝐺𝐺(𝑥𝑥) = 𝛼𝛼
sin 𝑥𝑥 − 𝑥𝑥 cos 𝑥𝑥

𝑥𝑥2 + 𝛽𝛽
2𝑥𝑥 sin 𝑥𝑥 + (2 − 𝑥𝑥2) cos 𝑥𝑥 − 2

𝑥𝑥3

+ 𝛾𝛾
−𝑥𝑥4 cos 𝑥𝑥 + 4[(3𝑥𝑥2 − 6) cos 𝑥𝑥 + (𝑥𝑥3 − 6𝑥𝑥) sin 𝑥𝑥 + 6]

𝑥𝑥5 , 
(S12) 

and 

𝛼𝛼 =
(1 + 2𝜙𝜙𝑃𝑃𝑃𝑃)2

(1 − 𝜙𝜙𝑃𝑃𝑃𝑃)4 , 

𝛽𝛽 =
−6𝜙𝜙𝑃𝑃𝑃𝑃(1 + 𝜙𝜙𝑃𝑃𝑃𝑃/2)2

(1 − 𝜙𝜙𝑃𝑃𝑃𝑃)4 , 

𝛾𝛾 = 𝛼𝛼𝜙𝜙𝑃𝑃𝑃𝑃/2. 

(S13) 

The experimentally obtained 1D intensity profiles were fitted by this model using the hard sphere radius RPY and the 
volume fraction ϕPY as the fitting parameters. The results of the fit are shown in the main text in Fig. 3d and Fig. 6d. 
  



S6. Bragg peak fitting 
An example of the diffraction pattern at T = 35 °C is shown in Fig. S4a. The pattern was interpolated into polar (q,φ)-

coordinates and divided by the form factor of the CS nanoparticles Pcs(q) extracted from the diluted sample as described 
in Section S2. At each q-value, the intensity between the Bragg peaks Siso(q) was calculated and additionally subtracted 
from the pattern to keep only the anisotropic Bragg peaks. The resulting pattern in polar coordinates is shown in 
Fig. S4b. 

Figure S5. (a) Example of the diffraction patterns at T = 35 °C, when the sample is crystallized. (b) The same pattern interpolated into polar coordinates after division 
by the form factor and subtraction of the isotropic part. The highlighted peak is shown enlarged in Fig. S5a. 

The peak highlighted in Fig. S4 is shown separately in Fig. S5a. It was fitted by the 2D Gaussian function: 

𝐺𝐺(𝑞𝑞,𝜑𝜑) =
𝐼𝐼

2𝜋𝜋𝜎𝜎𝑞𝑞𝜎𝜎𝜑𝜑
exp �−

(𝑞𝑞 − 𝑞𝑞0)2

2𝜎𝜎𝑞𝑞2
−

(𝜑𝜑 − 𝜑𝜑0)2

2𝜎𝜎𝜑𝜑2
�, (S8) 

where I is the integrated intensity, q0 and φ0 are the peak positions in radial and azimuthal directions, and 𝜎𝜎𝑞𝑞 and 𝜎𝜎𝜑𝜑 
are the peak width in radial and azimuthal directions. All these parameters were fitted by the least squares method to 
the experimental intensities. An example of the fit is shown in Fig. S5b. The radial FWHM was calculated as 𝑤𝑤𝑞𝑞 =
2√2ln2𝜎𝜎𝑞𝑞, the azimuthal one as 𝑤𝑤𝜑𝜑 = 2√2ln2𝜎𝜎𝜑𝜑𝑞𝑞0. The parameters were averaged over all peaks of the corresponding 
Bragg peak family. The errors were estimated as the standard deviation within a Bragg peak family. 

Figure S6. (a) Magnified area in the vicinity of one of the Bragg peaks from the 211����0 family. The peak is highlighted in Fig. S4. (b) The result of the peak fitting by a 2D 
Gaussian function. 

  



S7. Bragg peak fitting while heating 
During heating we observed splitting of each Bragg peak into three subpeaks as shown in the main text, Fig. 7e-h. The 

subpeaks were fitted by a linear combination of three Gaussian functions (eq. S8). Three sets of the parameters were 
optimized simultaneously. Evolution of the extracted parameters for each subpeak is shown in Fig. S6 – S8. 

 

Figure S7. Evolution of the parameters of the “blue” subpeaks of different orders: (a) the intensity, (b) the angular position, (c) the momentum transfer values with 
respect to the initial values, (d) the calculated unit cell parameters, (e) the FWHM in radial direction and (f) the FWHM in azimuthal direction. 

  



Figure S8. Evolution of the parameters of the “red” subpeaks of different orders: (a) the intensity, (b) the angular position, (c) the momentum transfer values with 
respect to the initial values, (d) the calculated unit cell parameters, (e) the FWHM in radial direction and (f) the FWHM in azimuthal direction. 

  



Figure S9. Evolution of the parameters of the “green” subpeaks of different orders: (a) the intensity, (b) the angular position, (c) the momentum transfer values with 
respect to the initial values, (d) the calculated unit cell parameters, (e) the FWHM in radial direction and (f) the FWHM in azimuthal direction. 

  



Besides the lattice spacing analysis, we performed Williamson-Hall analysis. We did find the results were not reliable 
because the FWHMs fits contained large errors. However, the resulting distortion values we did obtain for each 
crystallite are shown in Fig. S9 and again indicate significant difference in the crystallite behaviour. The “blue” crystallite 
initial distortion values of gq = 4 ± 1% and gφ = 5 ± 1% in radial and angular directions, respectively, are very similar to 
the average values at the end of cooling. During further heating, the distortions monotonically increase and reach the 
values of gq = 7 ± 2% and gφ = 10 ± 2% at T ≈ 38.2 °C, when the peaks disappear, indicating distortions in the crystallite 
structure grow. For the “red” and “green” crystallites, the values are initially lower at the level of g ≈ 3 ± 1% in both 
directions and stay almost constant in the whole temperature range until the crystallites fully melt. The latter shows 
that these crystals do not distort during melting. 

 

Figure S10. (a,b) Examples of the Williamson-Hall plots for the FWHMs of the subpeaks in (a) radial and (b) azimuthal directions at T = 37.0 °C. Points are experimental 
values and straight lines are the best fits. (c,d) Evolution of the extracted (c) radial and (d) angular lattice distortions during heating. 

References: 
1. R. Pelton, Adv. Colloid Interface Sci., 2000, 85, 1-33 
2. J. Als-Nielsen and D. McMorrow. Elements of modern X-ray physics. John Wiley & Sons, New York (2011) 
3. J. S. Pedersen, Adv. Colloid Interface Sci., 1997, 70, 171-210 
4. A. S. A. Mohammed, A. Carino, A. Testino, M. R. Andalibi and A. Cervellino, J. Appl. Cryst., 2019, 52, 344-350 


