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1 N-legged, one dimensional, caterpillar model

Note that unless specifically mentioned, in the entire supplementary information l is used as a shortcut
notation for spring length relative to its rest length l − l0.

1.1 Agreement of simulation and analytical results regardless of the value of ε
for the 1-legged caterpillar

In Fig. S1 we present agreement between the effective diffusion evaluated using stochastic simulations and
evaluated with the analytical formula Eq. (12) of the main paper.

Figure S1: Simulation results for different values of the non-dimensionalizing parameter ε = L/Lx charac-
terizing the difference between the length scale of oscillations of legs L versus the length scale of particle
displacement Lx, for the case of a 1-legged caterpillar. Various values of the attachment rate qon are explored
(given in non-dimensional units k/Γε2). The other numerical parameters are γ/Γ = 0.1 and qoff = 0.8k/Γε2.
The lines correspond to the analytical formula Eq. (12) of the main paper.

1.2 N legs facing a uniformly sticky surface

1.2.1 Method on an example: 2 legs facing a sticky surface

To investigate dynamics of caterpillars with multiple legs, we start by illustrating the framework on a 2 leg
system.

Projection of the dynamics in the bound state The first step is to write the projected dynamics in
the bound state. If there are 2 legs, when only 1 of them is bound, then the dynamics of the unbound leg are
completely independent of the bound one and the projected bound equations are the same as those reported
in the main paper. When 2 legs are bound however we must project again the dynamics. We therefore have
2 constraints q1(x, l1, l2) = x + l1 + xr,1 = 0 and q2(x, l1, l2) = x + l2 + xr,2 = 0 where xr are reference
positions when either of the legs first form their bond. The constraint matrix is therefore

C = (∇q)T =

1 1 0

1 0 1

 . (S1.1)

We then get the projector

P = I − CT (CCT )−1C =
1

3


1 −1 −1

−1 1 1

−1 1 1

 (S1.2)
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The friction matrix is in the unbound configuration

Γ̃ =


Γ 0 0

0 γ 0

0 0 γ

 (S1.3)

giving a projected friction and its Moore-Penrose pseudo-inverse as

ΓP = P Γ̃P = Γ+2γ
3 P, (S1.4)

Γ†P = 1
Γ+2γ 3P (S1.5)

with a square root

σP =

√
Γ†P =

1√
Γ + 2γ


1 0 0

−1 0 0

−1 0 0

 . (S1.6)

We obtain the projected dynamics

dx

dt
= −dl1

dt
= −dl2

dt
=
k(l1 + l2)

Γ + 2γ
+

√
2kBT

Γ + 2γ
η(t) (S1.7)

where η(t) is a white Gaussian noise. The friction in the bound state is therefore naturally the sum of the
frictions Γ + 2γ.

Generator for the dynamics For 2 legs we can write the full generator (in non-dimensional scales)

L(2) = 1
ε2L

(2)
0 + 1

εL
(2)
1 + L(2)

2 . The generator is now an operator acting on a space of 4 states ( #1 has no
bond, #2− 3 have 1 bond, where the leg 1 is bound in state #2 and reciprocally, and #4 has 2 bonds). The
lowest order generator is

L(2)
0 = Q+U0 =


−2qon qon qon 0

qoff −qoff − qon 0 qon

qoff 0 −qoff − qon qon

0 qoff qoff 2qoff

+diag


Γ
γ (Dl1 +Dl2)

Γ
Γ+γDl1 + Γ

γDl2

Γ
γDl1 + Γ

Γ+γDl2

Γ
Γ+2γ

(
−(l1 + l2)(∂l1 + ∂l2) + (∂l1 + ∂l2)2

)


(S1.8)

where Dli = −li∂li + ∂lili is an operator for the unbound tether i. The next orders are

L(2)
1 = diag


0

Γ
Γ+γ (l1∂x − 2∂xl1)

Γ
Γ+γ (l2∂x − 2∂xl2)

Γ
Γ+2γ ((l1 + l2)∂x − 2∂xl1 − 2∂xl2)

 and L(2)
2 = diag


∂xx

Γ
Γ+γ ∂xx

Γ
Γ+γ ∂xx

Γ
Γ+2γ ∂xx

 . (S1.9)

The equilibrium distribution is simply

π ∝


(qoff/qon)2

qoff/qon

qoff/qon

1

 e−l
2
1/2e−l

2
2/2. (S1.10)
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Long time solution We now seek a solution as an expansion in ε, f = f0 + εf1 + .... In a very similar way

as systematically observed in similar derivations we find f0 = a(x, t)
(

1 1 1 1
)T

at lowest order. The

associated equilibrium distribution is π0 = π. At the following order we need to solve L(2)
0 f1 = −L(2)

1 f0 and
we will seek a natural solution (that strongly reflects the symmetry of the problem) as

f1 =


u0l1 + u0l2

b1l1 + u1l2

u1l1 + b1l2

b2l1 + b2l2

 ∂xa (S1.11)

where un and bn are constants that solve a linear system of equations (with non zero determinant), and un
and bn refer respectively to unbound and bound contributions with n bonds in the system. We do not report
the equation system here but will come to it later on. At the next order, to find a solution for f2 we require

the Fredholm alternative, 〈∂tf0 − L(2)
2 f0 − L(2)

1 f1, π0〉 = 0, which gives(
q2
off

q2
on

+
2qoff

qon
+ 1

)
∂ta =

q2
off

q2
on

∂xxa+ 2
qoff

qon

Γ

Γ + γ
(1− b1) ∂xxa+ (1− 2b2) ∂xxa (S1.12)

which can be rewritten as a weighted sum (in dimensional scales)

∂ta = kBT

(
p0

Γ
+

p1

Γ+γ
(1−b1)

+
p2

Γ+2γ
(1−2b2)

)
∂xxa (S1.13)

where pk is the probability to have k bonds (p0 = q2
off/Z, p1 = 2qoffqon/Z and p2 = q2

on/Z with p0 +p1 +p2 =
1). The above expression clearly shows that the effective inverse friction is a weighted sum of inverse friction
coefficients

1

Γ2 legs
eff

=

2∑
n=0

pn
Γn

=

2∑
n=0

pn
Γ+nγ

(1−nbn)

. (S1.14)

We will show this expression for all N below. The linear system of equations solved by the uk and bk can
now be given

−2qonu0 + qonb1 + qonu1 −
Γ

γ
u0 = 0, (unbound contributions in the 0 bond state)

qoffu0 − qoffu1 − qonu1 + qonb2 −
Γ

γ
u1 = 0, (unbound contributions in a 1 bond state)

qoffu0 − qoffb1 − qonb1 + qonb2 −
Γ

Γ + γ
b1 = − Γ

Γ + γ
, (bound contributions in a 1 bond state)

qoffb1 + qoffu1 − 2qoffb2 − 2
Γ

Γ + 2γ
b2 = − Γ

Γ + 2γ
, (bound contributions in the 2 bonds state).

(S1.15)

Solving the above linear system yields lengthy expressions for bk and uk. One can show however that the
effective contributions for the bound states can be expanded as

Γ1 = Γ + γeff

(
1−O(

γeff

Γ
)
)

Γ2 = Γ + 2γeff

(
1 +O(

γeff

Γ
)
)

(S1.16)

such that we find already some a linear scaling as Γn ∼ Γ + nγeff .

1.2.2 N legs

Projection of the dynamics with N legs. The projection formalism naturally extends to N legs. For
n bound legs we find that the friction is simply Γ + nγ, such that the projected dynamics are for the first n
bound legs

dx

dt
= −dl1

dt
= ... = −dln

dt
=
k
∑n
i=1(li)

Γ + nγ
+

√
2
kBT

Γ + nγ
η(t). (S1.17)
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System of equations for N legs The generator is now an operator acting on 2N states, and we order
these states according to their number of bonds (0 bonds, all 1 bond states, all 2 bonds states, ...). For N

legs we can write the full generator (in non-dimensional scales) L(N) = 1
ε2L

(N)
0 + 1

εL
(N)
1 + L(N)

2 , where all

L(N)
i terms are very similar to the ones introduced for N = 2 and can be naturally generalized. Similarly

the equilibrium distribution is naturally extended as

π = e−
∑N
i=1 l

2
i /2
(

(qoff/qon)N (qoff/qon)N−1 (qoff/qon)N−1 .... (qoff/qon)N−2 ... 1
)T

. (S1.18)

Long time solution with N legs We now seek a solution as an expansion in ε, f = f0 + εf1 + .... In

a very similar way as systematically observed in similar derivations we find f0 = a(x, t)
(

1 ... 1
)T

at

lowest order. The associated equilibrium distribution is π0 = π. At the following order we need to solve

L(N)
0 f1 = −L(N)

1 f0 and we will seek a natural solution (that strongly reflects the symmetry of the problem)
as

f1 =



u0l1 + u0l2 + ...+ u0lN

b1l1 + u1l2 + ...+ u1lN

u1l1 + b1l2 + ...+ u1lN

...

b2l1 + b2l2 + u2l3...+ u2lN

...

bN l1 + bN l2 + ...+ bN lN


∂xa (S1.19)

where un and bn refer respectively to unbound and bound contributions with n bonds in the system. We
now seek the general system of equations satisfied by un and bn. For a number of bonds n, consider that
a given focus tether is unbound, say i. This will therefore allow us to obtain an equation on the unbound
contributions of that tether (that in li) so primarily on un. The tether is relaxing yielding a contribution
−Γ
γ un. There are n possible bonds to undo leading to a contribution (−nqoffun). In any n − 1 bond

configurations starting from our initial configuration, the focus tether will still be unbound (un−1), such that
we get an (+nqoffun−1) contribution. There are N − n bonds to form (−(N − n)qonun). In forming bonds,
only 1 choice yields to bind the focus tether (qonbn+1) while the other forming bonds will not be the focus

tether ((N − n − 1)qonun+1). The right hand side terms (from L(N)
1 f0) corresponding to unbound tethers

are 0. This yields the first line of the system of equations Eq. (S1.20) below. If one considers a bound focus
tether, similarly one can derive contributions due to binding and unbinding. The bound relaxation terms

yield a contribution (− nΓ
Γ+nγ bn). Additionally, the right hand side terms (coming from L(N)

1 f0) corresponding

to the unbound tether is − Γ
Γ+nγ . We obtain

nqoffun−1 − nqoffun − (N − n)qonun + qonbn+1 + (N − n− 1)qonun+1 −
Γ

γ
un = 0

qoffun−1 + (n− 1)qoffbn−1 − nqoffbn − (N − n)qonbn + (N − n)qonbn+1 −
nΓ

Γ + nγ
bn = − Γ

Γ + nγ
.

(S1.20)
The system Eq. (S1.20) applies for all n = 0..N , taking as boundary equations uN = 0 and b0 = 0.
Unfortunately the system does not simplify further but its determinant is non zero, showing that a non
trivial solution exists. We will study it further later but for now conclude on the long time solution. At the

next order, to find a solution for f2 we require the Fredholm alternative, 〈∂tf0 − L(N)
2 f0 − L(N)

1 f1, π0〉 = 0,
which yields after some algebraic manipulations (back in dimensional scales)

∂ta = kBT

(
p0

Γ
+

p1

Γ+γ
(1−b1)

+
p2

Γ+2γ
(1−2b2)

+ ...+
pN

Γ+Nγ
(1−NbN )

)
∂xxa (S1.21)
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where pn =
(Nn)xn(1−x)N−n

Z with x = qon/qoff is the probability to have n bonds. Writing in full generality

Γn =
Γ + nγ

(1− nbn)
(S1.22)

we indeed recover Eq. (15) of the main manuscript. We also see that the coefficients Γn indeed correspond to
friction contributions in a state with n bonds as only n and bn, that corresponds to the bound contributions,
intervene.

Resolution when the system is dominated by the average number of bonds We can search for
a closed (simpler) system for Eq. (S1.20) where the dominant terms will originate from the average number

of bonds Nb =
∑N
n=0 npn = N qon

qon+qoff
. We assume that, around this average number, terms do not change

much (the derivatives are close to 0), meaning we can approximate uNb ' uNb−1 ' uNb+1 ≡ ū, and similarly
for bNb = b̄ leading to {

−qonū+ qonb̄− Γ
γ ū = 0

qoff ū− qoff b̄− NbΓ
Γ+Nbγ

b̄ = − Γ
Γ+Nbγ

(S1.23)

Solving the system for b̄ and ū yields then the value of the friction coefficient for the average number of
bonds (back in dimensional scales)

ΓNb =
Γ +Nbγ

1−Nbb̄
= Γ +Nb

(
γ +

k

qoff
+ γ

qon

qoff

)
(S1.24)

Eq. (S1.24) is reported as Eq. (16) in the main text. It shows excellent agreement with the exact (numerical)
solution to the full system of Eqs. S1.20 at large total number of legs N (see Fig. S2).
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Figure S2: Value of friction coefficient for the average number of bonds as evaluated using Eq. (S1.24) or
equivalently Eq. (15) of the main paper (“Asymptotic model”) and fully solving the system of equations
Eq. (S1.20) and presenting the value Γn for the index n closest to Nb (“Numerical solve”). Here the values
of other parameters (in dimensional scales) are all set to 1 = qonΓ

k = qoffΓ
k = γ

Γ .

Empirical solution for an arbitrary number of bonds An interesting question is then to investigate
Γn, the effective friction contributing to the state with n bonds, in the large N (total number of legs)
limit. This requires solving the full system Eq. (S1.20). This system is not easily amenable to analytical
calculations, and instead we use it as a benchmark to explore a phenomenological law for Γn.

First, it is natural to assume that the correction Γn−Γ typically contains a term nγ coming from added
friction of the n bonds (as is noted already in the projected dynamics). Then, recall forces are also exerting
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Figure S3: Value of friction coefficients Γn for all possible number of bonds (for a maximum of N = 500) as
evaluated using Eq. (S1.27) (“Empirical model”) and fully solving for the system of equations Eq. (S1.20) and
presenting the values Γn (“Numerical Solve”). Index Nb is highlighted in green in each plot, and calculated
from Eq. (16) . The “Asymptotic Γn” result corresponds to Eq. (S1.28). Here the values of other parameters
(in dimensional scales) are all set to 1 = qonΓ

k = qoffΓ
k = γ

Γ unless another indication is given.

friction. Typically n bonds are exerting friction due to recall forces. Yet for this final contribution to Γn,
the situation is not the same for n bonds as for Nb bonds. Around n = Nb, the probabilities to be in a state
with one more bond or one bond less are more or less the same, p(Nb − 1) ' p(Nb) ' p(Nb + 1). For n
bonds, we have in general (for example investigating the probability to undo a bond)

p(n)

p(n− 1)
=

(
N
n

)
pn0 (1− p0)N−n(

N
n−1

)
pn−1

0 (1− p0)N−n+1

=

(
N
n

)
pn0 (1− p0)N−np0(

N
n

)
n

N−n+1p
n
0 (1− p0)N−n(1− p0)

=
p0

(1− p0)

N − n+ 1

n
=

Nb
N −Nb

N − n+ 1

n

(S1.25)

We expect that the typical time over which the spring resistance acts τeff has to be modified by the propensity
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to unbind (coming from the state with n bonds) as τeff → τeff
p(n−1)
p(n) . We obtain, wrapping up all contributions

Γn = Γ + n

(
γ + kτeff

p(n− 1)

p(n)

)
= Γ + n

(
γ + k

p(n− 1)

p(n)

[
1

qoff
+
γ

k

qon

qoff

])
. (S1.26)

which explicitly writes as

Γn = Γ + n

(
γ + k

N −Nb
N − (n− 1)

n

Nb

[
1

qoff
+
γ

k

qon

qoff

])
(S1.27)

Eq. (S1.27) is compared to the full solution of the linear system in Fig. S3. We find excellent agreement over
a broad range of parameters. Notice that also around n ' Nb and for Nb � N we find the limit behavior

Γn = Γ + n

(
γ +

[
k

qoff
+ γ

qon

qoff

])
(S1.28)

which allows us to recover, as anticipated, the result for n = Nb of Eq. (16) .

2 Comparison to experimental data for diffusion of DNA-coated
colloids

2.1 Experimental data for the diffusion of DNA-coated colloids: I. Additional
data

2.1.1 Preparation of material

DNA coated polystyrene colloids We synthesize DNA-coated polystyrene (PS) spheres using the
swelling/deswelling method reported in Ref. [2]. Polystyrene-b-poly(ethylene oxide) copolymer PS(3800
g/mol)-b-PEO(6500 g/mol) is purchased from Polymer Source Inc, and is first functionalized with azide at the
end of the PEO chain [3]. PS-b-PEO-N3 are then attached to the PS particles using the swelling/deswelling
method. In the synthesis, 15 µL of 1µm particles (10 w/v, purchased from Thermo Scientific), 125 µL
Deionized (DI) water, 160 µL tetrahydrofuran (THF) and 100 µL of PS-b-PEO-N3 are mixed at room tem-
perature. The mixture is placed on a horizontal shaker (1000 rpm) for 1.5 hours to fully swell the PS particles
and absorb the PS block of the PS-b-PEO-N3 molecules. Then THF is slowly removed from the solution
via evaporation by adding DI water, leaving the hydrophobic PS blocks physically inserted into the particles
and the hydrophilic PEO chains extending out into the solution. The particles are washed with DI water
three times to remove excess polymers.

Single stranded DNA (ssDNA, 20 bases, purchased from Integrated DNA Technologies) with 5’ diben-
zocyclooctyne (DBCO) end modification, is clicked to the N3 (at the end of PS-b-PEO-N3) through strain
promoted alkyne-azide cycloaddition [2]. PS particles previously coated with the PS-b-PEO-N3 polymer
brush are dispersed in 200 µL of 500 mM PBS buffer, at pH 7.4. Then 10 µL of DBCO-DNA (0.1 mM)
are added to the suspension. The mixture is left to react for 48 hours on a horizontal shaker (1000 rpm).
The final product is washed in DI water three times and stored in 140 mM PBS buffer. The DNA coverage
density is measured using flow cytometry and we obtain σ = 1/(3.27 nm2). The DNA sequence used on the
colloids is 5’-/DBCO/-T14-ACCGCA-3’.

DNA coated glass substrate DNA coated substrates are prepared using the same swelling/deswelling
method. First, an ultra thin PS layer is spin-coated to a cleaned 22 mm x 22 mm glass coverslip (purchased
from Bioscience Tools). The substrate is then swelled in the same PS-b-PEO-N3 solution in THF for 4
hours. Then THF is slowly removed from the solution via evaporation. DNA clicking is performed in a
home made PDMS reaction chamber for 48 hours on a shaking stage, then washed 10 times in DI water to
remove extra DNA. The entire sample is sealed in the 140 mM PBS buffer (ph 7.4) with 0.3% w/v pluronic
F127 surfactants, using UV glue to avoid any external flow or evaporation of the buffer. The DNA sequence
used on the glass substrate is complementary to that on the particles, 5’-/DBCO/-T14-TGCGGT-3’.
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2.1.2 Tracking DNA coated colloids

Particle positions measurements To study the diffusion of DNA coated colloids, we track the motion
of about 500 particles as they bind and diffuse on the DNA coated substrate – see Fig. S4-A. The sample
is mounted on a homemade lab microscope (Nikon Eclipse Ti 60X, 72nm pixel size, depth of focus 560 nm)
thermal stage with a temperature controller. Tracer particles fixed on the substrate are used to substract
camera drift during the tracking. Displacement measurements are performed by tracking particles over the
temperature range 28-62 ◦C – see Fig. S4-B. At each temperature, particles are tracked over a time range
of 20 min at a frame rate of 5 images per second. For the highest temperature reported here, T = 59.1 ◦C,
particles diffuse faster and we only track them over 5 min, with 10 images per second. Images are then
analyzed using the TrackPy software to obtain individual particle positions with time. Particles that do not
move at all even at high temperatures are removed from the analysis. These particles are likely in a low
density area where steric repulsion is not sufficient to screen van der Waals attraction, and therefore are
“crashed” on the surface.

A

A
C
C
G
C
A

T
G
G
C
G
T

PEO-DNA

Optical
Microscope

Polystyrene 

Polystyrene 

Glass

~ 3 nm 500 nm

B

Figure S4: Experimental setup to measure diffusion of DNA-coated colloids on DNA-coated
surfaces. (A) Schematic of a DNA-coated colloid attaching to a DNA-coated substrate, with the specific
DNA sequence used in this study. Diffusion of the colloids is tracked from on-top. (B) Example of a colloid
trajectory over an 18 min time frame (in blue) overlaid on the bright-field microscope image corresponding
to the colloid’s initial position. Here 1 px corresponds to 0.108 µm.

Mean square displacement analysis We fit the ensemble mean-squared displacement to a power law
as < x2(t) >= 4Dtα, where x is the position of each particle on the surface plane, using a linear regression
in log space to get the diffusion coefficient D and the power on time α. Typically, α decreases from ∼ 1
at high temperatures to values < 1 at lower temperatures. Around the melting transition however, there
exists a window of a few degrees where the motion is diffusive and we obtained 1.02 > α > 0.94. On
this temperature window we then fix α = 1 and the effective diffusivity Deff is obtained by fitting the
ensemble-averaged mean-square displacement to the power law 〈x2(t)〉 = 4Defft.

Melting curve To compare different measurements with one another we define a kinetic melting temper-
ature. This temperature Tm corresponds to the temperature for which the measured diffusion coefficient is
half that of the high temperature diffusion coefficient (the latter corresponding to the hydrodynamic diffusion
coefficient).

Reproducibility and error bars The entire experimental process (synthesis and mean square displace-
ment measurements) are reproduced 3 times and the results are reported with different symbols in Fig. 7A
of the main manuscript. Note that the synthesis is performed with slight variations of the coating process
(shaking time), yet very similar behavior is obtained – for example the melting temperatures for each of
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the samples are within 3◦C of each other. Such disparity in melting temperature can occur due to density
differences originating while performing the same synthesis and hence we do not report further details here.

As the average for Deff is calculated over a great number of particles, the typical error on Deff , for example
due to the fitting procedure, is very small – typically smaller than the size of the points used to represent
data and also much smaller than intrinsic disparities from sample to sample due to density fluctuations on
the surface coverage during sample preparation. Therefore we do not report any vertical error bars. The
exact temperature measured can slightly fluctuate, due to potential drift of the temperature controller, thus
it is reasonable to assume a 0.2◦C error bar on each experimental data point.

2.2 Experimental data for the diffusion of DNA-coated colloids: II. Existing
data

Diffusion of DNA-coated colloids from existing data was obtained from 2 published references [4, 5].

High coating density diffusion coefficients from Ref. [5] Diffusion coefficients from Ref. [5] were
obtained by fitting a linear law through extracted mean square displacement data using WebPlotDigitizer [6]
– when the diffusion exponent α is greater than ∼ 0.8. Mean square displacement data in Ref. [5] represents
the projected mean square displacement 〈r2〉 covered on a half-sphere, when the displacement on the half-
sphere is observed from on-top. The actual surface covered 〈x2〉 is therefore larger than that measured on
the projected area, and we can write 〈x2〉 = A〈r2〉 where A is an area correction number. If the particle
covers the entire area typically A ' 2 since 2πR2 is the actual area of the half sphere of radius R, and πR2

is the projected area. This typically accounts for the fact that the particles does not spend the same amount
of time on the sides of the half-sphere and on the top, and that on the sides displacements can be fully
orthogonal to the observation projection plane. Additionally, since motion is constrained to the half-sphere,
in practice the random walk is constrained and folded back onto the sphere. If it were unconstrained on the
sphere we would typically have 4πR2 of area covered projected on πR2 so we take A = 4 as an upper bound
on A. A = 2 is our lower bound. These bounds allow us to define error bars for the diffusion data of Ref. [5].
Again, considering potential density fluctuations on either surfaces and other experimental uncertainties due
to calibration of the temperature controller, it is reasonable to assume a 0.2◦C error bar on each experimental
data point.

The detailed parameters of the DNA-coated colloids used in Ref. [5] are provided in that reference and we
use their specific values to perform analytical predictions for Deff , see details below. The melting temperature
in Ref. [5] is defined as the temperature for which the fraction of single particles is 50%, since the particles
can self-assemble in arrays. This is a typical thermodynamic quantity hence we use a the thermodynamic
definition of melting [7]

p
Ref. [5]
unbound = 1− 1

Z

∫ hc

0

e−φ(h)/kBT dh (S2.1)

where φ(h) is a particle-particle interaction potential, hc ' 20 nm is a typical interaction range and Z a
normalization constant. We find without any fitting that T theo

m = 25.3◦C which is not too far from the
experimental melting temperature Tm = 28.9◦C. The difference is likely due to the slightly different method
used to quantify Tm. We align experimental data relative to Tm and theoretical data relative to T theo

m .

Low coating density diffusion coefficients from Ref. [4] Ref. [4] provides the diffusion coefficients for
their DNA-coated particles above the melting temperature Tm = 44.7◦C as Deff(47◦ C) = 0.38 µm2/s, and
at the melting temperature Deff(44.7◦ C) = 1.4× 10−3 µm2/s. Additionally, for the data provided 0.27◦ C
below Tm, the exponent for diffusion is α ∼ 0.8 and we can estimate the diffusion coefficient from a linear

fit to the data. We obtain Deff(44.5◦ C) = 30 µm2

30000s×4 = 0.25× 10−3 µm2/s.
The detailed parameters of the DNA-coated colloids used in Ref. [4] are provided in that reference and

we use their respective values to perform analytical predictions for Deff , see details below. The melting
temperature in Ref. [4] is defined as the temperature for which the fraction of moving particles is 50%, where
“ Moving is defined as a displacement larger than 50 nm (1 pixel) between frames (frame rate = 1 Hz)”. We
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can relate to this moving quantity by defining the unbound probability as

p
Ref. [4]
unbound = 1− erf

(
∆xmax√

4Deff∆tmax

)
(S2.2)

measuring the probability that a step is larger than ∆xmax = 50 nm during a time interval ∆tmax = 1 s
where the diffusion coefficient of the particle is Deff . Here we use Deff as predicted by hopping motion only
since only hopping is occurring in this sample due to geometrical constraints. We find T theo

m = 44.2◦C close
to the experimental measurement of Tm = 44.7◦C. We align experimental data relative to Tm and theoretical
data relative to T theo

m . In line with previous analysis we also add 0.2◦C error bar on each experimental data
point.

2.3 Modeling tools for DNA-coated colloids

2.3.1 Number of legs and average number of bonds

To evaluate Deff from Eq. (15) , we must evaluate the parameters of the 1D nanocaterpillar model. As
mentioned in the main manuscript, some parameters, such as N and Nb (or equivalently N and the ratio
qon/qoff) require careful modeling of the detailed leg-arm interactions [7] to be estimated.

We thus calculate the detailed DNA-DNA brush interactions, accounting for leg density, leg length and
DNA sequence, by evaluating the interaction energy φ(h) of the DNA-coated colloid with another coated
surface at separation distance h. Following Ref. [7], φ(h) includes repulsive steric interactions [8] and
attractive binding interactions, with entropic terms due to loss of degrees of freedom upon binding and
competition for binding partners [9].

A

B

C

very high coating density

high coating density

low coating density

Figure S5: Number of legs N and average number of bonds Nb involved in the binding process
predicted from theory. N and Nb are evaluated from detailed microscopic interactions for each system
corresponding to detailed design parameters of DNA-coated colloids used (A) in this work (B) in Ref. [5]
and (C) in Ref. [4].
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All parameters are precisely known in the experimental system, but one: the coating density. We can
estimate it by looking at the thermodynamic unbound probability obtained from the Boltzmann distribution

as pu ∼
∫ hc

0
e−βφ(h)dh, and comparing it to the similar quantity calculated experimentally. The experimental

data shows that the unbound probability transitions around Tm = 55−58◦ C which corresponds to theoretical
curves obtained with a surface density ranging from 1 DNA per (9 nm)2 to (12 nm)2. We therefore use 1
DNA per (10.5 nm)2 as a center value and the extremal values to calculate a fidelity interval for Deff (gray
area in Fig. 6A). These obtained values are within the range of expected values [7].

The average number of bonds Nb (gold in Fig. S5) and the number of legs within reach N (dashed black)
with respect to temperature are then readily evaluated from the model leading to φ(h). The number of
bonds at the melting temperature is only Nb(Tm) ' 10 while the number of available legs can be quite high
N(Tm) ' 100. The number of bonds Nb increases strongly with decreasing temperature, from 0 to 40 over
the 4◦C window, thus potentially accounting for most of the decrease in diffusion.

2.3.2 3D geometry

In general the particle can explore positions not just in one dimension but in 3D. Here we discuss how to
take into account this full geometry.

Second lateral dimension The second lateral dimension is – to some extent – a trivial extension of the
1-lateral dimension model derived in the main manuscript. We consider the constitutive equations for the leg
and the particle in 2 lateral dimensions (x, y), simplifying here to `0 = 0, namely considering that the rest
state of the tether lies right above the surface and that deformations are still quadratic in the leg extension.
We have

dl
dt = − kγ |l|

l
|l| +

√
2kBTγ ηl

dx
dt = +

√
2kBTγ ηx.

The leg extension l is readily projected on both coordinates:

|l| l
|l|

= l = lxux + lyuy

and similarly for the noise operators. We obtain

dli
dt = − kγ li +

√
2kBTγ ηl,i

dxi
dt = +

√
2kBTγ ηx,i.

where i = (x, y) refers to both lateral dimensions. The equations are fully uncoupled and hence it is not
necessary to conduct further calculations to conclude that the effective long time motion should write as

dx

dt
= +

√
2Deffηx.

where Deff has the same expression as in the main manuscript.

Vertical dimension The particle may also venture far from the surface, where binding is not possible.
To account for this 3D geometry, we use an extension of our main model.

One option to account for such a 2D dependence is to add a vertical degree of freedom say z for the
particle, together with spatially dependent rates qon(z), qoff(z). This is not a trivial modification, especially
as there are different ways to set the spatial dependence z of qon(z), qoff(z) (see for example the variability
between Refs. [10, 11, 12]).

Instead we rely on a simplified geometrical approach, that has been shown to accurately reproduce a 2D
geometry in another context [13], where we describe the system with 2 × 1D lines. For a 1-legged particle,
we consider that the particle can switch between two regions where its dynamics are constrained to 1D:

12



surface and bulk regions. The particle enters the surface region with rate Qon, and then can bind to the
surface with rate qon. If the particle is unbound in the surface region, it may lift off from the surface region
to the bulk region with rate Qoff . Qon

Qoff
corresponds to the ratio of positions where the receptors are within

and beyond reach. In DNA-coated colloid explorations, where particles are considered on top of a sticky
surface, the ratio can be small or large depending on the density mismatch between the particle material
and the surrounding fluid, that is otherwise described by the particle’s gravitational height [4]. For other
systems, such as white blood cells that are confined within blood vessels, particles are always close to the
wall [14] and hence the ratio is quite large. Approach and lift-off from the surface are slow processes that
scale like the diffusive dynamics of the particle and thus we may assume Qiτ ∼ Oε(1).

Performing similar coarse-graining steps (see following paragraph), we obtain an effective friction

1

Γ2×1D
eff

=
p2×1D

0

Γ0
+
p2×1D

1

Γ1
(S2.3)

where the probability to be in either states takes into account the added degree of freedom, p2×1D
1 = Qonqon/Z

and p2×1D
0 = qoff(Qon +Qoff)/Z with Z a normalization constant such that p2×1D

0 + p2×1D
1 = 1. The added

degree of freedom does not change the result of Eq. (12) , simply the mathematical interpretation of the
probability factors. Note that this framework has been verified against numerical simulations.

The values of Qon and Qoff can be evaluated from the detailed interaction potential φ(h) of a DNA-coated
colloid and the surface. In fact, the probability to be near the surface, in the absence of binding, is measured
by

Qon

Qon +Qoff
=

∫ hp

0

e−β(φ(h)−φbind(h))dh/Z (S2.4)

where φbind(h) measures the contributions to the interaction potential due to binding, hp ' 20 nm measures
the typical width of attractive interactions (region of space where binding could happen) and Z is a nor-
malizing factor. For our DNA-coated colloids we find Qon

Qon+Qoff
' 0.0015 and that the ratio does not depend

much on temperature. It also does not depend significantly on the exact value of hp for hp = 2− 40 nm.
For an N -legged caterpillar, the result generalizes to a change in the probability factors pn in Eq. (15)

for Deff . We have p2×1D
0 = qNoff(Qon + Qoff)/Z and p2×1D

n =
(
N
n

)
qN−noff qnonQon/Z such that Z = Qon(qon +

qoff)N +Qoffq
N
off .

2.3.3 2×1D, 1 legged nanocaterpillar model

In this section we derive the effective 1-legged long term caterpillar dynamics in an effective “2D” geometry
by using the 2×1D mapping. The steps are carefully detailed so as to serve as an additional pedagogical
explanation of the coarse-graining procedure introduced in the main text.

Constitutive equations of the 2×1D, 1-legged caterpillar model Let p(x, l, t) = (pV , pu, pb)
T be

the probability distribution function of finding the system at time t in state x, l far from the surface (V), or
close to the surface with a bound (b) or an unbound (u) leg. It obeys the Schmoluchowski equation

∂tp = L?p with L? = Q? + U? (S2.5)

where Q? is the matrix of rates to going from one state to another

Q? =


−Qon Qoff 0

Qon −Qoff − qon qoff

0 qon −qoff

 (S2.6)

and U? contains the dynamics in each state

U? = diag


∂l

(
k
γ (l − l0) + kBT

γ ∂l

)
+ kBT

Γ ∂xx

∂l

(
k
γ (l − l0) + kBT

γ ∂l

)
+ kBT

Γ ∂xx

(∂l − ∂x)
(

k
Γ+γ (l − l0) + kBT

Γ+γ (∂l − ∂x)
)
 . (S2.7)
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Consistently, the equilibrium distribution π = e−βk(l−l0)2/2

Z

(
Qoff

Qon , 1, qon

qoff

)T
is indeed a stationary solution

of Eq. (S2.5). Note that here Qon and Qoff represent respectively the rates at which the particle approaches
and leaves the vicinity of the surface, namely the region of space where binding is possible.

Non-dimensionalization Using the non-dimensional notation introduced in the main text allows to sep-
arate the Schmoluchowski operator L? in fast and slow operators. In the following, it will be somewhat
easier to conduct the reasoning not on L? but on its adjoint L, the generator of the system, defined such
that for appropriate functions f , we have 〈f,L?p〉 = 〈Lf, p〉, where 〈f, g〉 =

∫∫
(fV gV + fugu + fbgb)dldx is

the inner product. We therefore seek a solution f of the dynamics

∂tf = Lf =

(
1

ε2
L0 +

1

ε
L1 + L2

)
(S2.8)

where

L0 =


Γ
γ (−l∂l + ∂ll) 0 0

0 −qon + Γ
γ (−l∂l + ∂ll) qon

0 qoff −qoff + Γ
Γ+γ (−l∂l + ∂ll)

 , (S2.9)

L1 = diag

(
0, 0,

Γ

Γ + γ
(l∂x − 2∂lx)

)
(S2.10)

and

L2 =


−Qon Qon 0

Qoff −Qoff 0

0 0 0

+ diag

(
1, 1,

Γ

Γ + γ

)
∂xx. (S2.11)

Additionally, f has to satisfy boundary conditions of no flux at infinity

∂lf(x, l, t)|l=±∞ = 0 (S2.12)

which correspond to the usual no flux in probability space (where the flux in probability space satisfies
(lp+ ∂lp) |l=±∞ = 0). This condition is physical as it imposes conservation of probability. Note that we
expect these boundary conditions to be satisfied only at lowest order in ε.

Homogenization We seek a solution to Eq. (S2.8) as an expansion in the small parameter ε, as f =
f0 + εf1 + εf2 + .... At lowest order we need to satisfy L0f0 = 0 which yields the general solution

f0 =


aV (x, t)

aS(x, t)

aS(x, t)

+

∫ l

0

ey
2/2dy


bV (x, t)

bS(x, t)

bS(x, t)

 (S2.13)

where aS , aV , bS and bV are all integration “constants” and S and V denote surface and volume terms. With
the boundary conditions on f we get bS(x, t) = bV (x, t) = 0. Note that such boundary conditions also allow
the cross product 〈f0, π〉 to remain finite which will be expected later to use the Fredholm alternative.

The associated equilibrium distribution at lowest order π0 spans a two dimensional space described by
(π0,V (x, t), π0,S(x, t)) such that

π0 =
1

Z


π0,V (x, t)

π0,S(x, t))

π0,S(x, t)) qon

qoff

 e−l
2/2. (S2.14)

We therefore expect that our long time dynamics will consist in a 2× 2 matrix describing the joint evolution
of surface variables (aS(x, t)) and volume variables (aV (x, t)).
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At the next order we need to satisfy L0f1 = −L1f0. f1 is the sum of a particular integral and a
complementary function (i.e. a function in the nullspace of L0). The complementary function can be taken
to be 0 otherwise f1 would contain terms that are redundant with f0. One can check that the particular
integral to this equation is simply

f1 =


0

γqon

Γ + γqon

 l∂xa

Γ(1 + qoff) + γ(qon + qoff)
. (S2.15)

At the following order we need to find a solution to L0f2 = ∂tf0 − L2f0 − L1f1. This equation has a
solution if the right hand side terms of the equal sign satisfy the Fredholm alternative [15], namely

〈∂tf0 − L2f0 − L1f1, π0〉 = 0. (S2.16)

As π0 spans a 2D space described by (π0,V (x, t), π0,S(x, t)) we can evaluate the Fredholm alternative on an
orthogonal basis of this space; specifically here we will investigate the Fredholm alternative on (1, 0) then
(0, 1). On the volume space we have

∂taV = ∂xxaV −QonaV +QonaS . (S2.17)

On the surface space the terms are more lengthy and we split them for readability

〈∂tf0, π0〉 =

(
1 +

qon

qoff

)
∂taS , (S2.18)

〈L2f0, π0〉 = −QonaS +QonaV + ∂xxaS +
qon

qoff
∂xxa (S2.19)

and finally

〈L1f1, π0〉 = − qon

qoff

Γ + γqon

Γ(1 + qoff) + γ(qon + qoff)
∂xxaS . (S2.20)

Compiling all contributions on the surface we find

∂taS = −QoffaS +QoffaV

+
qoff

qoff + qon
∂xxaS +

qoff

qoff + qon

Γ

Γ + γ 1+qoff+qon

qoff

∂xxaS .
(S2.21)

Overall we have found effective long time dynamics described by the generator (in dimensional scales)

Leff =

−Qon + kBT
Γ ∂xx Qon

Qoff
qoff

qon+qoff
−Qoff

qoff

qon+qoff
+ kBT

Γeff
∂xx

 , such that ∂ta = Leffa. (S2.22)

Here Γ−1
eff = p0Γ−1

0 +p1Γ−1
1 with Γ0 = Γ, Γ1 = Γ+γ+k

(
1
qoff

+ k
γ
qon

qoff

)
, p0 = qoff/(qoff +qon) is the probability

to have no bond near the surface and p1 = 1 − p0 is the probability to have 1 bond near the surface. Note
that the expression of Γeff is exactly that when focusing only on surface dynamics and discarding effective 2D
dynamics (see Eq. (12) of the main paper). This shows that homogenization steps in the embedded 2×1D
geometry do not entangle with surface dynamics. To understand the meaning of this effective generator, we
go one step further.

Long (long) times We now wish to understand the long time dynamics of the generator Leff . We search
for long (long) time dynamics by using a non-dimensionalization that seeks even longer times as

t→ t̃
τ

ε
, x→ x̃Lx (S2.23)
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where τ = L2
y/D0 = L2

yΓ/kBT and Ly/Lx = 1/
√
ε corresponds to the far horizontal scales x is going to

explore (compared to the shorter vertical scales). Qon and Qoff are typically associated with the time scale
that the particle takes to diffuse vertically and therefore Qonτ ∼ 1 and likewise Qoffτ ∼ 1. We obtain the
non-dimensional generator

Leff =
1

ε

 −Qon Qon

Qoff
qoff

qon+qoff
−Qoff

qoff

qon+qoff

+

∂xx 0

0 Γ
Γeff

∂xx

 =
1

ε
L0 + L1 (S2.24)

and we search for a solution f of the equation ∂tf = Lefff expanded in ε as f = f0 + εf1 + ....

At lowest order we obtain from L0f0 = 0, f0 = a(x, t)

1

1

, with the associated equilibrium distribution

π0 =
1

Z

Qoff
qoff

qon+qoff

Qon

 . (S2.25)

At the next order we need to satisfy the Fredholm alternative, namely 〈∂tf0−L1f0, π0〉 = 0 leading to (back
in dimensional scales)

∂ta =
kBT

Γ2×1D
eff

∂xxa (S2.26)

where
1

Γ2×1D
eff

=
Qoffqoff

Qoffqoff +Qon (qon + qoff)

1

Γ
+

Qon (qon + qoff)

Qoffqoff +Qon (qon + qoff)

1

Γeff
. (S2.27)

Expanding terms with the expression of Γeff and rearranging we can summarize the result in the explicit
form, similarly as in Eq. (12) of the main paper,

1

Γ2×1D
eff

=
p2×1D

0

Γ0
+
p2×1D

1

Γ1
(S2.28)

where

p2×1D
0 =

(Qoff +Qon)qoff

Z
and p2×1D

1 =
Qonqon

Z
(S2.29)

are the probabilities to have respectively 0 and 1 bond, Z = (Qoff + Qon)qoff + Qonqon and Γ0 = Γ is the

friction in the unbound state and Γ1 = Γ + γ + k
(

1
qoff

+ k
γ
qon

qoff

)
is that contributing to the bound state. A

similar result for an N legged caterpillar, simply adapting the probabilities, is thus used to quantify diffusion
of DNA-coated colloids on surfaces.

To recover surface only dynamics, one simply has to take Qon/Qoff → ∞ in the above expression. In
that case one can easily obtain the surface only effective friction Eq. (12) of the main text.
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3 List of parameters for typical biological and artificial systems

We give now detailed references and methods to estimate the model parameters: Γ, γ, k, qon, qoff , N .

To estimate the reduced tangential hydrodynamic friction near the surface, we calculate Γ = f(δ/R) ×
6πη(T )R where R is the particle radius and η(T ) fluid viscosity at the relevant temperature. δ corresponds
to the separation distance between the particle and the surface and f is estimated using:

• if δ/R > 0.01, spline interpolation of the data in Ref. [16]; (using Python’s scipy.interpolate.splrep)

• if δ/R ≤ 0.01, the approximate formula (2.65a) in Ref. [16].

We take δ = 2a for all DNA-coated colloids and δ = a for all other systems where a is the length of the linker.
As f(δ/R) varies slowly with δ we can assume that a small error in δ will not affect our results significantly.

For the leg friction we take γ = 6πη(T )a.
All other parameters are detailed in the tables below.

17



Quantity Range of values Details

DNA coated colloids - low coverage large colloids

R 525 nm Low coverage streptavidin beads of [4]

η 0.0006Pa.s Viscosity of water at the melting temperature 44 ◦C

a 10− 15 nm estimated with for double stranded DNA, 60 nucleotides [17]

k 1× 10−4 N/m k ' 3 kBT
2Llp

where lp ' 3.4 nm is the typical persistence length corresponding to 10

base pairs in a helix and L ' 60(lp/10) ' 20 nm [4]

qon 2500 s−1 from qon ∼ konσ/aNA with kon = 2.2× 106M−1s−1 (44.7 ◦C) (value predicted
from Ref. [18] for the CCAAGTTATGA sequence used in [4], measurements on

sequences with a similar number of bases show slightly lower hybridization
rates [19])

qoff 25000 s−1 estimated unbinding rate around the melting temperature with a bound
probability of 10% (evaluated using full potential profile estimates following [7]).

Expected qoff ' qon at lower temperatures

σ 1/(12 nm−18 nm)2 coating density [4]

D 1.4× 10−3 µm2/s at the melting temperature [4]

D0 0.37 µm2/s calculated as D0 = kBT/12πηR with T = 44 ◦C (since close to the surface,
longitudinal friction is doubled due to hydrodynamic interactions)

D0/D 270 diffusion decrease factor, calculated with range of above values

N 40− 70 estimated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers, and density limited by the surface density, probably in the lower range

σ = 1/(16 nm)2

N(Tm) 40 number of involved legs at the melting point, using the methodology described in
Ref. [7]. Taking symmetric (particle and flat surface) density with σ = 1/(17 nm)2

and the exact DNA sequences and polymer types detailed in Ref. [4]

D0/Dhop 45− 800 calculated with Dhop = D0qNoff/(qoff + qon)N with values above.

DNA coated colloids - high coverage large colloids

R 500 nm High coverage beads of [7]

η 0.0005Pa.s Viscosity of water at melting temperatures 50-60 ◦C

a 13− 18 nm measured lengths of 6.5 k PEO strands tethered with 20 nucleotides of single
stranded DNA [7]

k 2× 10−4 N/m k ' 3 kBT
2L`p

expected spring constant with `p ' 0.5 nm and L = 80 nm (mixed

brush with PEO and DNA)

qon 1.3− 1.9× 104 s−1 from qon ∼ konσ/aNA with kon = 1.6× 106M−1s−1 (55 ◦C) (value predicted
from Ref. [18] for the ACCGCA sequence used in [7])

qoff 1.3− 1.9× 105 s−1 estimated unbinding rate at the melting temperature with a bound probability of
10% (evaluated using full potential profile estimates following [7]). Expected

qoff ' qon at lower temperatures

σ 1/(3.27 nm)2 measured coating density [7]

N 140− 190 estimated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers, and density limited by the surface density, probably in the lower range

σ = 1/(10 nm)2

Table S1: Parameter values for DNA coated colloids (large colloids)
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Quantity Range of values Details

DNA coated nanoparticles

R 7.5 nm Gold nanoparticles of Ref. [20]

η 0.0006Pa.s Viscosity of water at the melting temperature 44 ◦C

a 10 nm Estimated in Ref. [20]

k 2× 10−4 N/m k ' 3 kBT
2Llp

where lp ' 3.4 nm is the typical persistence length corresponding to 10

base pairs in a helix and L ' 30(lp/10) ' 10 nm [20]

qon 2× 104 s−1 from qon ∼ konσ/aNA with kon = 1.0× 106M−1s−1 (44 ◦C) (value predicted
from Ref. [18] for the CGCG sequence used in [20])

qoff 2× 105 s−1 estimated unbinding rate around the melting temperature with a bound
probability of 10% (evaluated using full potential profile estimates following [7]).

Expected qoff ' qon at lower temperatures

σ 1/(3 nm)2 from 80 strands/ 15 nm particle [21]

N 15− 20 estimated from N ' 2πReffhσeff taking h ' a/3 the typical penetration length of
the layers, effective radius of coated nanocolloid Reff = R+ h and density at the

outer layer σeff = σR2/R2
eff

Table S2: Parameter values for DNA coated nanoparticles

Quantity Range of values Details

Leukocyte adhesion mediated by P-selectin or L-selectin

R 4.15 µm typical cell size [22]

η 0.001Pa.s typical physiological conditions [23]

a 300 nm typical microvillus length [24]

k 4× 10−5 − 5×
10−3 N/m

typical spring constant of microvilli [24] up to spring constant of the bond itself
(excluding microvilli) [25]

Nb 1-2 typical number of contacts [26, 27]

σ 15− 30 µm−2 typical density of ligands [28, 27]

N 40− 80 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers. Coherent with Ref. [29].

P-selectin

qon 4− 300 s−1 from qon ∼ konσ/aNA with measured binding rates
kon = (4− 100)× 105 M−1s−1 [25, 30, 27]

qoff 0.02− 1.6 s−1 measured unbinding rate [25, 30, 23]

L-selectin

qon (0.4− 4)× 104 s−1 measured binding rates [26]

qoff 7− 250 s−1 measured unbinding rate [31, 28], shorter lifetime than P-selectin

Table S3: Parameter values for white blood cells
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Quantity Range of values Details

E. Coli motility mediated by adhesion between FimH adhesin at the tip of pili and glycoproteins on the surface

R 350 nm and
L = 3 µm

cylindrical features [32]

η 0.001Pa.s typical physiological conditions [23]

a 100 nm pili characteristic size to calculate hydrodynamic resistance, from
√

2Lc`, see
below [33]

k 0.6 µN/m typical spring constant as kBT/Lc` where Lc = 2 µm is the contour length and
` = 3.3 nm is the persistence length [33]

qon 5− 125 s−1 from qon ∼ konσ/aNA with measured binding rates
kon = 2− 50× 105 M−1s−1 [34, 35, 36]

qoff 1− 100 s−1 measured unbinding rate [34, 35, 36]

σ 15− 45 µm−2 Pili density, calculated from 100-300 pili over the cylinder surface [37]

N 2− 7 calculated from N ' 2rLσ taking r '
√

2aR/3 the typical half width of the
cylinder in contact.

Table S4: Parameter values for Escherichia Coli

Quantity Range of values Details

Cargo transport by molecular motors

R 1 µm typical cargo size [38]

η 0.001Pa.s typical physiological conditions [23]

a 25 nm microtubule diameter [39]

k 0.2− 0.5 mN/m typical spring constant [39, 40]

qon 0.4 s−1 measured individual binding rate [41]

qoff 4 s−1 measured unbinding rate [42]

Table S5: Parameter values for molecular motors

Quantity Range of values Details

Protein cargos in the nuclear pore complex

R 50 nm estimated from D = 4 µm2/s for karyopherin-β which is a major transporter in
the NPC [43, 44], R = kBT/6πηD, and using η as below

η 0.001Pa.s typical physiological conditions [23]

a 8− 10 nm estimated with worm like chain model in [45]

k 0.06-0.1 mN/m typical spring constant of the Nucleoporin Nup 153 [45]

qon 3×105−3×108 s−1 from qon ∼ konρ with kon = 107 − 109 M−1s−1 [44]

qoff 104 − 107 s−1 estimated unbinding rate [44]

ρ 30− 250mM concentration of Nup in pore [44, 46]

Table S6: Parameter values for nuclear pore transport
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Quantity Range of values Details

Influenza A

R 60 nm average measured diameter [47]

η 0.001Pa.s typical physiological conditions [23]

a 12− 15 nm typical height of Hemagglutinin [48, 47]

k 1− 2 mN/m typical spring constant [48, 49]

qon 0.07− 130 s−1 calculated from qon ∼ qoff/KDσ/aNA with KD = 2− 950 mM [50, 48]

qoff 0.1− 30 s−1 measured unbinding rate (focused on Hemagglutinin to Sialic Acid) [48, 51, 49, 52]

x = qon
qon+qoff

0.2 Bound fraction at equilibrium [48]

σ 6800 µm−2 average measured coverage of HA proteins on virus ( 85% of total (HA +
NA)) [47]

D 0.05− 0.5 µm2/s measured on typical lipid bilayers with sialic acid receptors [51], strongly
dependent on qoff in the same qualitative way as predicted in out theory

D 0.01 µm2/s also measured on typical surfaces [52]

D0 1.9 µm2/s calculated as D0 = kBT/12πηR with T = 37 ◦C (since close to the surface,
longitudinal friction is doubled due to hydrodynamic interactions)

D0/D 4− 190 diffusion decrease factor, calculated with range of above values

N 10− 13 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers.

D0/Dhop 9− 20 calculated with Dhop = D0qNoff/(qoff + qon)N with values above.

SARS CoV 2

R 50 nm typical virus size [53]

η 0.001Pa.s typical physiological conditions [23]

a 6− 23 nm ligand protein characteristic size [54, 53]

k 0.1− 0.4 N/m typical spring constant from simulation results [55] and [56]

qon 770− 1500 s−1 from qon ∼ konσ/aNA with kon = 0.7− 1.4× 105 M−1s−1 [54, 57]

qoff 0.05 s−1−0.01 s−1 measured unbinding rate of individual ligand-receptor pairs [55, 54]

N 1− 2 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers.

x 0.1-0.2 Bound fraction at equilibrium [54] in AFM experiments

σ 1000 µm−2 density of spike proteins on the surface [53]

SARS CoV 1

R 50 nm typical virus size [53]

η 0.001Pa.s typical physiological conditions [23]

a 6− 23 nm ligand protein characteristic size [54, 53]

k 0.6 N/m typical spring constant from simulation results [55]

qon 1200− 2500 s−1 from qon ∼ konσ/aNA with kon = 0.7− 1.4× 105 M−1s−1 [54, 57] (similar to
Sars CoV 2 [57])

qoff 0.6 s−1 measured unbinding rate of individual ligand-receptor pairs [55]

N 1− 4 calculated from N ' 2πRhσ taking h ' a/3 the typical penetration length of the
layers.

x 0.1-0.2 Bound fraction at equilibrium is similar to Sars CoV 2 [54, 57]

σ 1600 µm−2 density of spike proteins on the surface [53]

Table S7: Parameter values for viruses
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4 Coarse-graining under different models and assumptions

4.1 Coarse-graining with particle inertia

While more details on inertial effects with multivalent receptor contacts will be written in a separate pa-
per [58], here we briefly recapitulate some results of this work to support claims made in the main manuscript.

4.1.1 Equations set up with particle inertia

We consider now that the particle has inertia, described by a mass m. To simplify derivations we can neglect
inertial effects from the legs, as in general the legs are much smaller than the particle itself, and hence have
much lower mass. Alternatively, in Ref. [58] we will show that one can start with inertia on all components,
and take the limit of small mass of the legs relative to particle mass on the final result, and obtain the same
result as if the limits were inverted.

We thus write the unbound equations for a particle with a single leg as
dl
dt = − kγ l +

√
2kBTγ ηl

dx
dt = v
dv
dt = 1

m

(
−Γv +

√
2kBTΓηx

) (S4.1)

where m is the mass of the particle and v the velocity of the particle.
When the leg is bound to the surface, it is not necessary to project the dynamics. Writing Newton’s

second law on the system of the (particle+leg bound to surface) one finds the bound equations
dl
dt = v
dx
dt = v

dv
dt = 1

m

[
− Γv +

√
2kBTΓηx +

(
−γv − kl +

√
2kBTγηl

) ] . (S4.2)

4.1.2 Possible resolution with particle inertia following Ref. [1]

The generator for the system is

L =

−qon − k
γ l∂l + kBT

γ ∂ll + v∂x − Γ
mv∂v + kBTΓ

m2 ∂vv +qon

+qoff −qoff + v∂x + v∂l − k
m l∂v −

Γ+γ
m v∂v + kBT (Γ+γ)

m2 ∂vv


(S4.3)

with a natural stationary distribution (now including a Boltzmann factor corresponding to the kinetic energy
of the particle)

π =
1

Z

qoff/qon

1

 e−kl
2/2kBT e−mv

2/2kBT . (S4.4)

In addition to non-dimensionalizing space and time we need to non-dimensionalize the velocity. We then
take (on top of usual non-dimensional quantities in the paper, reported here for completeness)

x→ Lxx̃, l→ Ll̃, t→ τ t̃, v → ṽLx/τ = ṽ
L

ε

ε2k

Γ
. (S4.5)

Mass also needs to be non-dimensionalized. Here we write, following Ref. [1], m = m̃Lkτ2/Lx. The
dimensionless number mLx/(Lkτ)1/τ = τv/τ can be interpreted as the ratio of the correlation time of the
velocity τv to the time scale of observation τ . We require τ/τv = 1

m̃ε such that we may observe coarse grained
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dynamics. Dropping the ·̃ notation we find the non-dimensional generator

L =
1

ε2
L0 +

1

ε
L1 + L2 =

1

ε2

−qon − Γ
γ l∂l + Γ

γ ∂ll +qon

+qoff −qoff

+
1

ε

0 0

0 v∂l − 1
m l∂v


+

v∂x − 1
mv∂v + 1

m2 ∂vv 0

0 v∂x − Γ+γ
Γ

1
mv∂v + Γ+γ

Γ
1
m2 ∂vv

 (S4.6)

We can then set up a similar step by step search of a solution at multiple orders seeking a solution f =
f0 + εf1 + εf2 + ...

At lowest order solving L0f0 = 0 yields simply f0 = a(x, t)

1

1

 and the associated equilibrium distri-

bution π0 = 1
Z′

qoff/qon

1

 e−l
2/2.

At the next order we need to solve L0f1 = l
m∂va

0

1

 that is easily shown to yield

f1 = − 1

1 + (γ+Γ)qoff

γqon+Γ

(
qoff

qon+Γ/γ

) l∂va
m

. (S4.7)

To find a solution at the following order, we need to satisfy the Fredholm alternative 〈∂tf0 − L2f0 −
L1f1, π0〉 = 0. Standard algebra yields an equation for the function a(x, v, t) as (back in dimensional scales)

∂ta = v∂xa−
Γmeff

m
v∂va+

kBTΓmeff

m2
∂vva (S4.8)

which corresponds to an inertial motion with friction

Γmeff =
qoff

qon + qoff
Γ +

qon

qon + qoff

(
Γ + γ + k

(
1

qoff
+
γ

k

qon

qoff

))
(S4.9)

which writes with the notations of the main paper

Γmeff = p0Γ0 + p1Γ1 (S4.10)

which is exactly Eq. (20) of the main paper.
As highlighted in the main paper, there is a notable difference between Γmeff = p0Γ0 + p1Γ1, with inertia,

and Γ−1
eff = p0Γ−1

0 + p1Γ−1
1 when inertia is neglected. In particular, the results are not equivalent when

unbinding rates are slow such as qoffΓ/k � 1. We will reconcile these results in a separate paper [58].

4.2 Choice of time-scale hierarchy

4.2.1 Averaging with a different choice of scaling ε = γ/Γ

It is common to assume a different choice of scalings assuming fast unbound tether dynamics. This choice
of assumptions can be formulated mathematically as γ/Γ = γrε

2, where γr is a non-dimensional number of
order 1. This typically corresponds to short legs on a large particle, as γ and Γ are expected to scale with
leg size and particle size via Stokes law. When doing such a reasoning, it is also common to lighten the
assumption on scale separation for x and l and take L = Lx [59]. We keep other non-dimensional scalings.
For simplicity we will write ε = ε2 as no terms in ε appear now. We then obtain the non-dimensional
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generator as an expansion L = 1
εL0 + L1 + εL2 + ε2L3 + ..., with the first terms as

L =
1

ε

−qon − 1
γr
l∂l + 1

γr
∂ll qon

qoff −qoff

+

∂xx 0

0 l(∂x − ∂l) + (∂x − ∂l)2

+ε

0 0

0 −γrl(∂x − ∂l)− γr(∂x − ∂l)2

+...

(S4.11)
Notice above that the non-dimensionalization for the binding rates qon, qoff is such that it assumes binding
and unbinding to be much faster than the long time dynamics searched for.

We look for a solution as f = f0 +εf1 +ε2f2 + ... At first order we find easily f0 = a(x, t)

1

1

 associated

with the equilibrium distribution π0 ∝

qoff/qon

1

 e−l
2/2.

At the following order, to find a solution f1, we require the Fredholm alternative, namely 〈∂tf0 −
L1f0, π0〉 = 0, yielding

∂ta− ∂xxa = 0. (S4.12)

We can now solve for L0f1 = −L1f0 + ∂tf0 making use of this first order equation on a. The equation to be

solved simplifies to L0f1 = −

1

0

 l∂xa. This gives

f1 =
l∂xa

qoff

 γrqon

1 + γrqon

 . (S4.13)

To solve for f2 we require the Fredholm alternative at the following order, namely 〈∂tf0 + ε∂tf1−L1f0−
εL1f1 − εL2f0, π0〉 = 0. We focus on specific terms

〈∂tf1, π0〉 = 0, (S4.14)

then

〈−L1f1, π0〉 = +∂xxa
γrqon + 1

qoff
, (S4.15)

and
〈−L2f0, π0〉 = +γr∂xxa (S4.16)

such that summing up all contributions and reverting to original dimensions we obtain

∂ta =
kBT

Γ
γ/Γ=ε
eff

∂xxa (S4.17)

with
1

Γ
γ/Γ=ε
eff

=

(
qoff

qon + qoff

)
1

Γ
+

(
qon

qon + qoff

)
1

Γ

(
1− γ

Γ

[
1 +

k

γ

(
1

qoff
+
γ

k

qon

qoff

)])
(S4.18)

with is exactly Eq. (21) of the main paper. We note that this is exactly the γ/Γ first order Taylor expansion
of the equation obtained without assuming γ/Γ� 1, namely of Eq. (12) of the main paper.

4.2.2 Averaging with pre-averaging of tether dynamics (fast tether relaxation dynamics com-
pared to all other dynamics)

Equation set up with pre-averaging and resolution A commonly used framework is to assume that
unbound leg dynamics are so fast that essentially when a new bond is created, the leg length may be sampled
from its (bare) equilibrium distribution. This may be formally obtained using homogenization as well by
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assuming unbound relaxation is very fast compared to binding dynamics, γ/k � 1/qon/off , though we do not
report the details here. It is a commonly used framework [59, 60].

The unbound state is described by the variables (x, t) while the bound state is described with (x, l, t).
We write the equations for the probability distributions in each state

∂tpu = −pu
∫
e−kl

2/2kBT qondl +

∫
qoffpb(x, l, t)dl +

kBT

Γ
∂xxpu (S4.19)

∂tpb = +pue
−kl2/2kBT qon + qoffpb(x, l, t) +

kBT

Γ + γ
∂xxpb + (...) (S4.20)

where the (...) denote the rest of the bound projected dynamics and Z is some normalization constant that
does not depend on l. Notice that here we kept the Γ + γ in the bound state to highlight that such a
term would have to be kept in the case of a great number of springs N , as this would become Γ + Nγ
and would therefore have to remain. The equilibrium distribution associated with these dynamics is simply

π = 1
Z

 qoff

qon

e−βkl
2

 and satisfies detailed balance:

πu × qone
−βkl2/2 =

1

Z

qoff

qon
× qone

−βkl2/2 =
e−βkl

2/2

Z
× qoff = πb × qoff . (S4.21)

With this approach (compared to the main paper derivation), the only part of the generator that changes
is the lowest order term L0. In particular one should determine the non-dimensionalization. Importantly
here one should notice that qon and qoff do not have the same units. The ratio qoff/qon = O(L) has units
of a lengthscale. We can therefore keep the usual non-dimensionalization for qoff

Γ
kε2 = ˜qoff

ε2 but not for the

binding rate, which we take as qon
Γ

kLε2 = ˜qon

ε2 . We find (dropping the ·̃)

L0 =

− ∫ qone
−l2/2dl +

∫
qone

−l2/2dl

+qoff −qoff − l∂l + ∂ll.

 (S4.22)

Resolution for f0 does not change and we get f0 = a(x, t)

1

1

, with associated equilibrium distribution

π0 = π.

At the next order we get the solution f1 = l∂xa
1

1+qoff

0

1

.

Finally at second order we require the Fredholm alternative 〈∂tf0 − L2f0 − L1f1, π0〉 = 0 yielding

∂ta =
kBT

Γ
k/γ�q
eff

∂xxa (S4.23)

with
1

Γ
k/γ�q
eff

=

(
qoff

qon + qoff

)
1

Γ
+

(
qon

qon + qoff

)
1

Γ + γ + k
qoff

. (S4.24)

This is nearly exactly the result obtained without pre-averaging but for the kτ relax
u = k

(
γ
k
qon

qoff

)
contribution

corresponding to the time the tether is allowed to relax between 2 binding periods. It is exactly the result
reported in Eq. (22) of the main manuscript.

Relation to Ref. [12] In this paragraph we relate our results to the results obtained in Ref. [12]. Eq.
(2.48) of Ref. [12] finds an effective long time diffusion, starting from similar equations as Eq. (S4.20),

D
Ref. [12]
eff = D0

(
1 + ε

ν − 2

β0(1 + β0)λ

)
(S4.25)
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where we will give the meaning of the new notations (ν, ε, β0, λ) by expressing them with respect to our
notations. Here, ν = k/ktether = 1 in our case because there is no change in recall spring force between the
bound (ktether) and unbound states (k). We also have β0 = qoff

qon
, here ε = D0

qonL2 and λ = kBT/kL
2 such that

the effective diffusion writes with our notations

D
Ref. [12]
eff = D0

(
1− k/qoff

Γ

qon

qon + qoff

)
. (S4.26)

Compared to the previous derivation, this result corresponds to an effective friction with pre-averaging of
tether dynamics (which is indeed what is done in Ref. [12]) and scales with k/qoff similarly as the derivation
assuming γ/Γ = ε. In Ref. [12], as the dynamics are already pre-averaged, they are expressed at 0th order in
γ/Γ. Therefore the key common point of these derivations (Ref. [12] and Sec. 2.2 here) is to assume similar
spatial scales, namely Lx = L. This highlights that the assumption L/Lx = ε allows one to ”safely” average
dynamics without specific assumptions on other physical parameters.

Relation to N legs facing a uniformly sticky membrane In Fig. S6 we show that the pre-averaged
result corresponds to the predictions for N legs facing a uniformly sticky surface when the average number
of bonds legs Nb . 1.
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Figure S6: Pre-averaged results correspond to N legs facing a uniformly sticky surface when the average
number of bonds legs Nb . 1. (A) Deff as calculated with a numerical resolution of Eq. (15) of the main
paper (“Full solution”) or with the pre-averaged result of Eq. (22) of the main paper (“Pre-averaging”) with
respect to the binding rate qon. Other parameters are γ

Γ = 1 and qoffΓ
k = 0.1; (B) Corresponding average

number of bonds Nb.

4.2.3 Averaging with fast binding dynamics compared to relaxation dynamics

To understand how fast binding dynamics affect this system, we use the same non-dimensionalization as in
the main text but for L = Lx (thereby allowing relaxation dynamics to be of similar order as the long time
mobility of the particle). We obtain the non-dimensional generator

L =
1

ε2

−qon qon

qoff −qoff

+

Γ
γ (−l∂l + ∂ll) + ∂xx 0

0 Γ
Γ+γ

(
l(∂x − ∂l) + (∂x − ∂l)2

)
 =

1

ε
L0 + L1 (S4.27)

where we used ε = ε2.
We then seek a solution as an expansion f = f0 + εf1 + ε2f2 + .... At lowest order we need to solve−qon qon

qoff −qoff

 f0 = 0 (S4.28)
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which simply yields f0 = a(x, l, t)

1

1

 and the associated equilibrium distribution π0 =

 qoff

qon

1

. Notice

how here the equilibrium distribution at lowest order does not correspond to the full equilibrium distribution
π0 6= π. At the following order to find a solution to the problem we require the Fredholm alternative
〈∂tf0 − L1f0, π0〉 = 0, which gives the equation

∂ta =p0
Γ

γ
(−l∂l + ∂ll) + p0∂xx

+ p1
Γ

Γ + γ

(
l(∂x − ∂l) + (∂x − ∂l)2

) (S4.29)

where p0 = qoff

qoff+qon
= 1 − p1 is the probability to be unbound and p1 to be bound. This new effective

equation can now be explored by means of time and length scale separation by setting a new small scale
parameter ε2 = L

Lx
. This small scale operator allows us to write

∂ta =
1

ε22
L0,2 +

1

ε2
L1,2 + L2,2 (S4.30)

where L0,2 =
(
p0

Γ
γ + p1

Γ
Γ+γ

)
(−l∂l + ∂ll), L1,2 = p1

Γ
Γ+γ (l∂x − 2∂xl) and L2,2 =

(
p0 + p1

Γ
Γ+γ

)
∂xx. We seek

a solution a = a0 + ε2a1 + ε22a2 + ....
At lowest order we need to solve L0,2a0 = 0 which implies a0 = a0(x, t) making use of vanishing flux

boundary conditions at infinity. The associated equilibrium distribution is now π0,2 = e−l
2/2/Z.

At the next order we need to solve L0,2a1 = −L1,2f0 = −p1
Γ

Γ+γ l∂xa such that a1 = − p1
Γ

Γ+γ

p0
Γ
γ+p1

Γ
Γ+γ

l∂xa =

− l∂xa
1+

p0
p1

γ
Γ+γ

. At the following order, to find a solution we require the Fredholm alternative, namely 〈∂ta0 −
L2,2a0 − L1,2a1, π0,2〉 = 0. After some standard algebra one finds

∂ta0 =
1

Γq fast
∂xxa (S4.31)

where
1

Γq fast
=
p0

Γ
+

p1

Γ + γ/p0
(S4.32)

which, reverting to dimensional scales, is exactly Eq. (23) of the main paper.

4.3 Arm and/or legs

4.3.1 Arm or leg

In this part we show precisely how having an arm (spring always attached to the surface) or a leg (spring
always attached to the particle) affects the dynamics. There are several ways one can consider to obtain the
dynamics of the leg or the arm (referred to henceforth as spring). Either assume (1) that the center of mass
of the spring is attached to the particle (or the surface), (2) either that the center of mass is located at the
free end of the spring (when it is attached to the particle or the surface). Both assumptions do not yield
exactly the same dynamics but the differences in the long time effective dynamics are minor.

(1) Arm or leg (spring) attached by their center of mass Consider in general a free spring, where
motion is confined to a line but none of the spring ends are attached. The length of the spring l (more
accurately here l represents the length imbalance compared to the rest length of the spring l− l0 but we take
l0 = 0 for simplicity) obeys the overdamped Langevin equation

dl

dt
= −kl

γ
+

√
2kBT

γ
ηl. (S4.33)
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The center of mass c of the spring similarly obeys an overdamped Langevin equation, with diffusion only

dc

dt
=

√
2kBT

γ
ηc (S4.34)

and we considered that the diffusion coefficient of the center of mass is similar to that of the spring length.
For simplicity we consider here that the center of mass of the spring is located at one of its ends, namely
the end that will be permanently attached to a surface in this paragraph.

In addition the particle also diffuses as

dx

dt
=

√
2kBT

Γ
ηx. (S4.35)

Arm configuration. If we consider the arm configuration, then the center of mass c is attached to the
surface and satisfies the constraint q(x, l, c) = c − xsurface = 0. The projected dynamics in that case are
trivial and sum up to the ones detailed in the main text and recalled here for consistency:

dx
dt =

√
2kBT

Γ ηx,

dl
dt = −klγ +

√
2kBT
γ ηl,

dc
dt = 0.

(S4.36)

Leg configuration. If we consider the leg configuration, then the center of mass c is attached to the particle
and satisfies the constraint q(x, l, c) = x− c = 0. This constraint is similar to the one for the bound spring
for which the projection formalism is described in Appendix A of the main text. The projected dynamics
are therefore 

dx
dt =

√
2kBT
Γ+γ ηx,

dl
dt = −klγ +

√
2kBT
γ ηl,

dc
dt = dx

dt .

(S4.37)

These dynamics are exactly equivalent to the arm configuration but for the change Γ→ Γ +γ, and therefore
yield the same resulting effective long time dynamics with a similar change Γ → Γ + γ. One can thus
simply consider that Γ is indeed the friction coefficient of the unbound particle, which potentially includes
corrections to friction due to legs being attached to the surface.

(2) Arm or leg (spring) with center of mass at the free end We now consider the situation where
the center of mass of the spring is located at its free end, and the other end is attached to the particle or
the surface.

Leg configuration. Consider in general a spring, attached to one end to the particle (in x) and to the
other end to the spring’s mass (in x+ l). Newton’s second law on each mass, and taking loosely overdamped
dynamics with masses going to 0, yields the system of equations{

0 = −Γdx
dt + kl +

√
2kBTΓηx,

0 = −γ d(x+l)
dt − kl +

√
2kBTγηl.

(S4.38)

The system simplifies for each variable into
dx
dt = +kl

Γ +
√

2kBT
Γ ηx,

dl
dt = −kl

(
1
Γ + 1

γ

)
−
√

2kBT
Γ ηx +

√
2kBT
γ ηl.

(S4.39)

This system corresponds to a friction matrix and force field

Γ̃−1 =

 1
Γ − 1

Γ

− 1
Γ

1
γ + 1

Γ

 and ∇U =

 0

kl

 . (S4.40)
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When the spring (here the leg) becomes temporarily bound to the surface, the bound equations then simply
read (provided appropriate projection, following Appendix A, is made)

dx
dt = +kl

Γ +
√

2kBT
Γ ηx,

dl
dt = −dxdt = −klΓ −

√
2kBT

Γ ηx.
(S4.41)

In non-dimensional scales, the hierarchy of generators now reads

L0 =

−qon + Γ+γ
Γ (−l∂l + ∂ll) qon

qoff qoff + (−l∂l + ∂ll)

 , (S4.42)

L1 =

(l∂x − 2∂lx) 0

0 (l∂x − 2∂lx)

 , and L2 =

∂xx 0

0 ∂xx

 . (S4.43)

Using a coarse-graining method as usual, we obtain simply the usual harmonic sum Γ−1
eff = p0Γ−1

0 +p1Γ−1
1

where the friction coefficients writeΓ0 = Γ + γ + k
(
γ
k

qon

qoff+k/Γ

)
Γ1 = Γ + γ + k

(
1
qoff

+ γ
k
qon+k/Γ
qoff

)
(model (2)).

(S4.44)

Compared to the coefficients obtained if the spring is attached to the particle by its center of mass (model
(1)), namely {

Γ0 = Γ + γ

Γ1 = Γ + γ + k
(

1
qoff

+ γ
k
qon+qoff

qoff

)
, (model (1)),

(S4.45)

the results are quite similar independent of the attaching model. Qualitatively, in the non-center of mass case
(model (2)), we obtain additional feedback friction terms due to the spring, as kτeff where τeff is a typical
time over which the spring relaxes, scaling naturally as γ/k multiplied by a ratio of characteristic times τ...

τ...
.

This ratio corresponds to the fact that the spring may only relax in the other state, and hence different ratios
appear according to the different modeling options and bound states. Be that as it may, such contributions
are generally minor. In fact, one can verify (not shown here) that the numerical values of Γeff/Γ according
to model (1) or (2) show very little difference over full R3 space described by the parameters.

We now explore potential differences when the number of legs is increased. For 2 legs, the dynamics in
the unbound state are 

dx
dt = +k(l1+l2)

Γ +
√

2kBT
Γ ηx,

dl1
dt = −dxdt −

kl1
γ +

√
2kBT
γ η1

dl2
dt = −dxdt −

kl2
γ +

√
2kBT
γ η2

(S4.46)

and when leg 1 is bound to the surface simply
dx
dt = −dl1dt = +k(l1+l2)

Γ +
√

2kBT
Γ ηx,

dl2
dt = −dxdt −

kl2
γ +

√
2kBT
γ η2

(S4.47)

and when both legs are bound{
dx
dt = −dl1dt = −dl2dt = +k(l1+l2)

Γ +
√

2kBT
Γ ηx. (S4.48)

Dynamics are then easily extended to N legs using the free spring end model applied to each leg. Coarse-
graining and asymptotics (around the average number of bonds) then easily lead to

Γeff ' ΓNb = Γ +Nγ +Nb

[
γ + k

(
1

qoff
+
γ

k

qon

qoff

)]
(model (2)). (S4.49)
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Eq. (S4.49) is exactly the result obtained by attaching legs by their center of mass (model (1)), provided the
suitable change Γ→ Γ +Nγ is done for N legs. There is thus no difference between the different models in
the leg configuration when a large number of legs are involved.

Arm configuration. The arm configuration with mass at the free end (model (2)) is trivially equivalent
to that attached by the center of mass as

dx
dt =

√
2kBT

Γ ηx,

dl
dt = −klγ +

√
2kBT
γ ηl.

(S4.50)

There is thus no difference between the different models in the arm configuration.

4.3.2 Arm and leg

Equations set up We consider random attachement and detachement of two springs to one another, in
the leg and arm geometry – see Fig. S7-A.

When the springs are unbound the dynamic equations are
dl1
dt = − kγ l1 +

√
2kBT
γ η1(t)

dl2
dt = − kγ l2 +

√
2kBT
γ η2(t)

dx
dt =

√
2kBT

Γ ηx(t)

(S4.51)

where l1 is the length of the top spring, l2 the length of the bottom spring, and for simplicity here we took
l0 = 0.

In the bound state we need to project the dynamics. When the springs bind, we consider that a rigid
bond is formed between the springs’ sticky ends that keeps the distance constant – see Fig. S7. The dynamic
constraint is then

q(x, l1, l2) = x+ l1 − l2 + lbond = 0 (S4.52)

where lbond is the length of the bond and remains constant until the springs detach and reattach to form
another bond length. If we imagine that the bottom spring is part of a periodic array of springs, such that
at any time, only one bottom spring is accessible to the top spring, lbond is typically of order L – see Fig. S7
– and thus a reasonable physical assumption.

The constraint matrix is then C = (1, 1,−1) and the projection matrix

P = 1− 1

3


1 1 −1

1 1 −1

−1 −1 1

 =
1

3


2 −1 1

−1 2 1

1 1 2

 (S4.53)

such that the Moore-Penrose pseudo inverse of the projected friction is

Γ†P =
1

γ + 2Γ


2 −1 1

−1 γ+Γ
γ

Γ
γ

1 Γ
γ

γ+Γ
γ

 (S4.54)

with a square root

σP =
1

γ + 2Γ


2
√

Γ
√
γ −√γ

√
Γ

√
γ/2 + γ+2Γ√

4γ
−√γ/2 + γ+2Γ√

4γ

−
√

Γ −√γ/2 + γ+2Γ√
4γ

√
γ/2 + γ+2Γ√

4γ

 . (S4.55)
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fixed point

x(t)

l1(t)
moving particle

fixed surface fixed point

rigid bond

arbitrary fixed origin

A

B

lbond

l2(t)

interaction radius 
of bottom spring

Rdistance between 2 spring 
fixed points

d = 2R

Figure S7: Geometry of binding with a particle having an arm and a leg. (A) The spring attached to the
moving particle may bind to the bottom spring by forming a rigid bond that “fills in the distance” between
the separated springs. Such a model is equivalent to (B) where the bond is formed with the “closest”
available bond. Here if springs on the surface are evenly spaced with a typical spacing d = 2R we consider
that the top spring’s sticky end binds to a surface spring whose fixed point is closest, and always closer
than R. Switching events between one spring and then another are long if the distance between two surface
springs is large and are ignored. The equivalence between A and B could be shown more systematically, but
is beyond the scope of this manuscript.

The dynamics in the bound state are therefore
dx
dt = − k

2Γ+γ (l1 − l2) +
√

8kBTΓ
(2Γ+γ)2 ηx +

√
2kBTγ

(2Γ+γ)2 (η1 − η2)

dl1
dt = 1

2
dx
dt −

k
2γ (l1 + l2) +

√
2kBT

4γ (η1 + η2)

dl2
dt = − 1

2
dx
dt −

k
2γ (l1 + l2) +

√
2kBT

4γ (η1 + η2)

(S4.56)

Generator The generator is then

L =

−qon qon

qoff −qoff

+

− kγ l1∂l1 + kBT
γ ∂l1l1 − k

γ l2∂l2 + kBT
γ ∂l2l2 + kBT

Γ ∂xx 0

0 0


+

0 0

0 − k
2Γ+γ (l1 − l2)(∂x − 1

2∂l2 + 1
2∂l1)− k

2γ (l1 + l2)(∂l2 + ∂l1)


+

0 0

0 + 2kBT
2Γ+γ (∂x − 1

2∂l2 + 1
2∂l1)2 + kBT

2γ (∂l2 + ∂l1)2


(S4.57)

With this generator one can check that L?π = 0 with the natural equilibrium distribution

π =
1

Z

qoff/qon

1

 e−kl
2
1/2kBT e−kl

2
2/2kBT (S4.58)

where Z is a normalization constant.
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Homogenization Taking the usual scalings we get the following non-dimensional, expanded generator

L =
1

ε2

[−qon qon

qoff −qoff

+
Γ

γ

−l1∂l1 + ∂l1l1 − l2∂l2 + ∂l2l2 0

0 0


+

0 0

0 − Γ
2(2Γ+γ) (l1 − l2)(∂l1 − ∂l2)− Γ

2γ (l1 + l2)(∂l2 + ∂l1) + Γ
2(2Γ+γ) (∂l2 − ∂l1)2 + Γ

2γ (∂l2 + ∂l1)2

]

+
1

ε

0 0

0 − Γ
2Γ+γ (l1 − l2)∂x + ∂x(∂l1 − ∂l2) 2Γ

γ+2Γ


+ 1

∂xx 0

0 2Γ
γ+2Γ∂xx

 =
1

ε2
L0 +

1

ε
L1 + L2

(S4.59)

We now seek an expanded solution f of ∂tf = Lf as f = f0 + εf1 + ε2f2 + ...

At lowest order, L0f0 = 0 gives f0 = a(x, t)

1

1

, and the associated equilibrium distribution π0 = π.

At first order we need to solve

L0f1 = −L1f0 = +

0

1

 Γ

γ + 2Γ
(l1 − l2)∂xa (S4.60)

which has a unique solution

f1 = −

 γqon

Γ+γqon

1

 (l1 − l2)∂xa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

. (S4.61)

At 2nd order we need to satisfy the Fredholm alternative 〈∂tf0 − L2f0 − L1f1, π0〉 = 0. We split up
the terms to highlight calculation steps (discarding Z terms to simplify notations, as they would cancel out
eventually)

〈L1f1, π0〉 =− 〈
(
−(l1 − l2)2 Γ

γ + 2Γ
+ 2

2Γ

γ + 2Γ

)
e−l

2
1/2e−l

2
2/2〉 ∂xxa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

=−
(
−2

Γ

γ + 2Γ
+ 2

2Γ

γ + 2Γ

)
∂xxa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

=− 2Γ

γ + 2Γ

∂xxa

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

(S4.62)

and

〈L2f0, π0〉 =

(
qoff

qon
+

2Γ

γ + 2Γ

)
∂xxa. (S4.63)

Gathering terms as 〈∂tf0, π0〉 = 〈L2f0, π〉+ 〈L1f1, π0〉 we get(
1 +

qoff

qon

)
∂ta =

(
qoff

qon
+

2Γ

γ + 2Γ

Γqoff

Γ+γqon

γ+2Γ
Γ

1 + Γqoff

Γ+γqon

γ+2Γ
Γ

)
∂xxa. (S4.64)

Now shifting back to dimensional scales and reorganizing terms slightly we obtain

∂ta =

 qoff

qon + qoff

kBT

Γ
+

qon

qon + qoff

kBT

Γ + 1
2

(
k
qoff

+ qon

qoff
γ + γ

)
 ∂xxa. (S4.65)
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Using the notations of the main papaer p0 = qoff/(qon + qoff) the probability to be unbound, p1 = 1− p0 the
probability to have 1 bond and γeff = γ + k

qoff
+ γ qon

qoff
we obtain

1

Γleg+arm
eff

=
p0

Γ
+

p1

Γ + 1
2γeff

(S4.66)

that is exactly Eq. (24) in the main paper.

4.3.3 Several arms for 1 leg

Equations set up We consider random attachment and detachment of two springs to one another, in the
leg and arm geometry, but now when there are possibly M arms to attach to.

When the springs are unbound the dynamic equations are
dl
dt = − kγ l +

√
2kBT
γ η(t)

dli
dt = − kγ li +

√
2kBT
γ ηi(t) for i = 1 . . .M

dx
dt =

√
2kBT

Γ ηx(t)

(S4.67)

where l is the length of the top spring, li are the lengths of all the bottom springs, and for simplicity here
we took l0 = 0.

In the bound state we need to project the dynamics. The dynamic constraint with the bound bottom
spring indexed by b is then

q(x, l, lb) = x+ l − lb + lbond = 0 (S4.68)

where lbond is the length of the bond, similarly as in the previous section. The constraint process leaves the
unbound spring equations completely unaffected and we find after the projection step

dx
dt = − k

2Γ+γ (l1 − l2) +
√

8kBTΓ
(2Γ+γ)2 ηx +

√
2kBTγ

(2Γ+γ)2 (η − ηb)
dl
dt = 1

2
dx
dt −

k
2γ (l + lb) +

√
2kBT

4γ (η + ηb)

dlb
dt = − 1

2
dx
dt −

k
2γ (l + lb) +

√
2kBT

4γ (η + ηb)

dli
dt = − kγ li +

√
2kBT
γ ηi(t) for i = 1..M and i 6= b

(S4.69)

Generator The generator is similarly

L = Q+ U =



−Mqon qon qon .. qon

qoff −qoff 0 ... 0

qoff 0 −qoff ... 0

...

qoff 0 0 ... −qoff


+ U (S4.70)

and U is a diagonal matrix. The first term of U corresponds to fully unbound dynamics

U00 = −k
γ
l∂l +

kBT

γ
∂ll +

∑
i

(
−k
γ
li∂li +

kBT

γ
∂lili

)
+
kBT

Γ
∂xx (S4.71)

and further terms correspond each to a bond with the bth arm

Ubb =− k

2Γ + γ
(l − lb)(∂x −

1

2
∂lb +

1

2
∂l)−

k

2γ
(l + lb)(∂lb + ∂l)

+
2kBT

2Γ + γ
(∂x −

1

2
∂lb +

1

2
∂l)

2 +
kBT

2γ
(∂lb + ∂l)

2 +
∑
i 6=b

(
−k
γ
li∂li +

kBT

γ
∂lili

) (S4.72)
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With this generator one can check that L?π = 0 with the natural equilibrium distribution

π =
1

Z


1

qon/qoff

qon/qoff

...

 e−kl
2/2kBT e−

∑
i kl

2
i /2kBT (S4.73)

where Z is a normalization constant.

Homogenization Taking the usual scalings we get the non-dimensional generator L = 1
ε2L0 + 1

εL1 + L2,
where L0 = Q+ U0 where U0 is diagonal with

(U0)00 =
Γ

γ

(
−l∂l + ∂ll +

∑
i

(−li∂li + ∂lili)

)
(S4.74)

(U0)bb = − Γ

2(2Γ + γ)
(l − lb)(∂l − ∂lb)−

Γ

2γ
(l + lb)(∂lb + ∂l) +

Γ

2(2Γ + γ)
(∂lb − ∂l)2 +

Γ

2γ
(∂lb + ∂l)

2

Γ

γ

∑
i 6=b

(−li∂li + ∂lili)

(S4.75)

and L1 is such that (L1)00 = 0 and

(L1)bb = − Γ

2Γ + γ
(l − lb)∂x + ∂x(∂l − ∂lb)

2Γ

γ + 2Γ
(S4.76)

and finally

L2 =


∂xx 0 0 ...

0 2Γ
γ+2Γ∂xx 0 ...

0 0 2Γ
γ+2Γ∂xx ...

 (S4.77)

We now seek an expanded solution f of ∂tf = Lf as f = f0 + εf1 + ε2f2 + ...

At lowest order the resolution gives f0 = a(x, t)


1

1

1

...

, and the associated equilibrium distribution π0 = π.

At first order we need to solve f1 and it is useful to seek a genuinely symmetric solution

L0f1 = +


0

(l − l1)

(l − l2)

...


Γ

γ + 2Γ
∂xa, seeking f1 =


u0l + u′0l1 + u′0l2 + ..

b1l + b′1l1 + u′1l2 + ...

b1l + u′1l1 + b′1l2 + ...

...

 ∂xa (S4.78)

where u0, u
′
0, b1, b

′
1 and u′1 are constants. Notice that here u and b refer respectively to unbound and

bound contributions, with x and x′ corresponding respectively to leg or arm contributions, and the indices
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correspond to the number of bonds of the state. The constants obey the system of equations

−Mqonu0 + qonMb1 − u0
Γ

γ
= 0

−Mqonu
′
0 + qonb

′
1 + (M − 1)qonu

′
1 − u′0

Γ

γ
= 0

qoffu0 − qoffb1 −
Γ

2(2Γ + γ)
(b1 − b′1)− b1 + b′1

2

Γ

γ
=

Γ

2Γ + γ

qoffu
′
0 − qoffb

′
1 +

Γ

2(2Γ + γ)
(b1 − b′1)− b1 + b′1

2

Γ

γ
= − Γ

2Γ + γ

−qoffu
′
1 + qoffu

′
0 − u′1

Γ

γ
= 0

(S4.79)

that has a unique solution. For now we do not report the coefficients here for simplicity.
At 2nd order we need to satisfy the Fredholm alternative 〈∂tf0 − L2f0 − L1f1, π0〉 = 0. We split up

the terms to highlight calculation steps (discarding Z terms to simplify notations, as they would cancel out
eventually)

〈L1f1, π0〉 =
∑
i

qon

qoff

Γ

γ + 2Γ
〈(−(l − li)(b1l − b′1li) + 2(b1 − b′1)) e−l

2/2e−l
2
i /2〉∂xxa

=M
2Γ

γ + 2Γ

(b1 − b′1)

2
∂xxa

(S4.80)

and

〈L2f0, π0〉 =

(
1 +

2Γ

γ + 2Γ

Mqon

qoff

)
∂xxa. (S4.81)

Gathering terms as 〈∂tf0, π0〉 = 〈L2f0, π〉+ 〈L1f1, π0〉 we get(
1 +M

qon

qoff

)
∂ta =

(
1 +

Mqon

qoff

2Γ

γ + 2Γ
(1 +

(b1 − b′1)

2
)

)
∂xxa. (S4.82)

Reorganizing terms slightly we arrive at (in dimensional scales)

∂ta = kBT

(
p0,M

Γ
+
p1,M

Γ1,M

)
∂xxa. (S4.83)

with p0,M = qoff

qoff+Mqon
and p1,M = 1− p0,M and

Γ1,M =
Γ + γ/2

1− (b1 − b′1)/2
. (S4.84)

We can further expand Γ1,M by using the expressions for b1 and b′1. We find

Γ1,M = Γ +

(
γ + k

qoff

)(
γ + k

qoff
+ γMqon

qoff

)
(
γ + k

qoff

)
+
(
γ + k

qoff
+ γ (M−1)qon

qoff

) (S4.85)

that is exactly Eq. (25) in the main paper. Notice that, since arm and leg are interchangeable, a similar
effect would be observed for a particle with M legs allowed to bind to 1 arm.

Notice that when M is large, we obtain that the above expression simplifies to

Γ1,M = Γ + γeff,1,M with
1

γeff,1,M
=

1

γeff,M,1
+

1

γeff,1,1
, (S4.86)

with γeff,M,1 = k
(

1
qoff

+ γ
k

(M−1)qon+qoff

qoff

)
the effective friction due to the leg γeff,1,1 = k

(
1
qoff

+ γ
k

)
due to

arms.
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4.3.4 N legs facing M potential arms

2 legs facing 2 arms To understand the dynamics at play in the case of N legs facing M potential arms
we first investigate the more specialized 2 for 2 scenario. We number legs as 1 and 2 and arms as 3 and 4.
We write the generator for this system directly in the non-dimensional scales. It is a bit lengthy as there are
now 7 possible states. We arrange the states as state #1 is the unbound state, states #2− 5 correspond to
1 bond states, and states #6− 7 to 2 bond states. We write L = Q+ U . The transition rate matrix for the
generator is simply

Q =
1

ε2



−4qon qon qon qon qon . .

qoff −qoff − qon . . . qon .

qoff . −qoff − qon . . . .qon

qoff . . −qoff − qon . .qon .

qoff . . . −qoff − qon . .qon

. qoff . qoff . −2qoff .

. . qoff . qoff . −2qoff


(S4.87)

Then we write the diagonal (only non zero) components of U . For the unbound state we have

U11 =
1

ε2
Γ

γ

4∑
i=1

Dli + ∂xx (S4.88)

where Dli = −li∂li + ∂lili is the unbound relaxation operator. Then in the 2..5 states where just one tether
is bound we have (for example for the 2 state where tethers say 1 and 3 are bound)

U22 =
1

ε2

(
− Γ

2(2Γ + γ)
(l1 − l3)(∂l1 − ∂l3)− Γ

2γ
(l1 + l3)(∂l3 + ∂l1) +

Γ

2(2Γ + γ)
(∂l3 − ∂l1)2 +

Γ

2γ
(∂l3 + ∂l1)2

)
+

1

ε2
Γ

γ
(Dl2 +Dl4) +

1

ε

Γ

2Γ + γ
(−(l1 − l3)∂x + 2∂x(∂l1 − ∂l3)) + 1

(
2Γ

2Γ + γ
∂xx

)
(S4.89)

and similarly for the other 1 bond states. Finally for the 6 and 7 states, 2 bonds are formed. In these state
we have, for example for state #6 that contains the bonds 1− 3 and 2− 4

U66 =− Γ

2Γ + 2γ
(l1 − l3 + l2 − l4)(

1

ε
∂x −

1

ε2
1

2
∂l3 +

1

ε2
1

2
∂l1 −

1

ε2
1

2
∂l4 +

1

ε2
1

2
∂l2)

− 1

ε2
Γ

2γ
(l1 + l3)(∂l3 + ∂l1)− 1

ε2
Γ

2γ
(l2 + l4)(∂l4 + ∂l2)

+
Γ

2(2Γ + 2γ)

(
2∂x +

1

ε
(∂l1 + ∂l2 − ∂l3 − ∂l4)

)2

+
Γ

2γ

1

ε2

[
(∂l1 + ∂l3)

2
+ (∂l2 + ∂l4)

2
] (S4.90)

and reordering this last expression as a function of the scales in ε

U66 =
1

ε2

(
−Γ(l1 − l3 + l2 − l4)

2(2Γ + 2γ)
(∂l1 − ∂l3 + ∂l2 − ∂l4)− (l1 + l3)Γ

2γ
(∂l3 + ∂l1)− (l2 + l4)Γ

2γ
(∂l2 + ∂l4)

)
+

1

ε2

(
Γ

2(2Γ + 2γ)
(∂l1 + ∂l2 − ∂l3 − ∂l4)

2
+

Γ

2γ

[
(∂l1 + ∂l3)

2
+ (∂l2 + ∂l4)

2
])

+
1

ε

(
2Γ

(2Γ + 2γ)
∂x (∂l1 + ∂l2 − ∂l3 − ∂l4)− Γ(l1 − l3 + l2 − l4)

2Γ + 2γ
∂x

)
+ 1

(
2Γ

2Γ + 2γ
∂xx

)
(S4.91)
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Here the equilibrium distribution is

π =
1

√
2π
(

2 + 4 qoff

qon
+

q2
off

q2
on

) (q2
off/q

2
on, qoff/qon, qoff/qon, qoff/qon, qoff/qon, 1, 1

)T
. (S4.92)

We seek a solution to the expanded generator L = 1
ε2L0 + 1

εL1 + L2 as f = f0 + εf1 + ε2f2.... No steps
change in the resolution compared to previous calculations but for finding the solution at order 1. Here we
seek a solution

L0f1 = −L1f0 =



0

1
2Γ+γ (l1 − l3)

1
2Γ+γ (l1 − l4)

1
2Γ+γ (l2 − l4)

1
2Γ+γ (l2 − l3)

1
2Γ+2γ (l1 − l3 + l2 − l4)

1
2Γ+2γ (l1 − l4 + l2 − l3)


Γ∂xa (S4.93)

The solution is expected to preserve the symmetries of the problem and therefore we may seek

f1 =



u0l1 + u0l2 + u′0l3 + u′0l4

b1l1 + u1l2 + b′1l3 + u′1l4

...

b2l1 + b2l2 + b′2l3 + b′2l4

...


∂xa (S4.94)

where bn, b
′
n, un, u

′
n are constants that refer to bound and unbound configurations of the leg or the arms.

They solve a linear system of equations that possesses a single solution that we will report below.
The Fredholm alternative at the next order requires 〈∂tf0 − L2f0 − L1f1, π〉. We obtain, splitting the

relevant contributions

〈L1f1, π〉 = 0 +
(b1 − b′1)Γ

2Γ + γ
p1 +

2(b2 − b′2)Γ

2Γ + 2γ
p2 (S4.95)

and assembling all terms allows to get an effective long time diffusion equation ∂ta = Γ
Γ2,2

eff

∂xxa where

1

Γ2,2
eff

=
1

Γ
p0 +

1
Γ+γ/2(

1− b1−b
′
1

2

) p1 +
1

Γ+2γ/2(
1−2

b2−b′2
2

) p2 (S4.96)

which is similarly as in all cases a weighted harmonic sum of friction coefficients, with pn the probability to
have n bonds.
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The system of equations that the constants satisfy is

− 4qonu0 − u0 + 2qonb1 + 2qonu1 = 0

− 4qonu
′
0 − u′0 + 2qonb

′
1 + 2qonu

′
1 = 0

qoffu0 − qoffb1 − qonb1 + qonb2 −
γ

2(2Γ + γ)
(b1 − b′1)− b1 + b′1

2
=

γ

2Γ + γ

qoffu
′
0 − qoffb

′
1 − qonb

′
1 + qonb

′
2 +

γ

2(2Γ + γ)
(b1 − b′1)− b1 + b′1

2
= − γ

2Γ + γ

qoffu0 − qoffu1 − qonu1 + qonb2 − u1 = 0

qoffu
′
0 − qoffu

′
1 − qonu

′
1 + qonb

′
2 − u′1 = 0

qoffb1 + qoffu1 − 2qoffb2 −
2γ

2(2Γ + 2γ)
(b2 − b′2)− b2 + b′2

2
=

γ

2Γ + 2γ

qoffb
′
1 + qoffu

′
1 − 2qoffb

′
2 +

2γ

2(2Γ + 2γ)
(b2 − b′2)− b2 + b′2

2
= − γ

2Γ + 2γ

(S4.97)

Since the bottom and top tethers don’t exactly have the same positions it’s not possible to simplify further,
typically bn 6= −b′n. This really shows the structure of the equations.

N legs facing M arms The above system of equations allows to generalize the derivation for n bonds in
some N legs for M arms structure. For each possible number of bonds say n, the tethers are either unbound
(un, u

′
n) or bound (bn, b

′
n) and can exchange with their counterparts.

When there are n bonds, focusing on a connected pair, one can still bind more pairs, and there are
(M − n)(N − n) possible ways to do so. In any case the connected pair will remain connected during that
transformation. When there are n bonds, one can unbind n pairs. n− 1 possibilities lead to the given pair
still being bound.

For an unconnected leg (resp. arm), there are only M − n possibilities (resp. (N − n)) to form a bond
that will connect the unconnected one.

We obtain the general system of equations as

nqoffun−1 − (nqoff + (N − n)(M − n)qon)un + qon(M − n)bn+1 + qon(N − n− 1)(M − n)un+1 − un
Γ

γ
= 0

nqoffu
′
n−1 − (nqoff + (N − n)(M − n)qon)u′n + qon(N − n)b′n+1 + qon(M − n− 1)(N − n)u′n+1 − u′n

Γ

γ
= 0

qoffun−1 + (n− 1)qoffbn−1 − (nqoff + (N − n)(M − n)qon)bn + qon(N − n)(M − n)bn+1...

− nΓ

2(2Γ + nγ)
(bn − b′n)− bn + b′n

2

Γ

γ
= − Γ

2Γ + nγ

qoffu
′
n−1 + (n− 1)qoffb

′
n−1 − (nqoff + (N − n)(M − n)qon)b′n + qon(N − n)(M − n)b′n+1...

+
nΓ

2(2Γ + nγ)
(bn − b′n)− bn + b′n

2

Γ

γ
=

Γ

2Γ + nγ

Γ + nγ/2

1− n(bn − b′n)/2
= Γn

(S4.98)

Looking for the average number of bonds contribution, we may assume similarly that for n = Nb we have
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un ' un−1 ' un = ū, and similarly for other quantities. We thus obtain the closed system of equations

−(M −Nb)qonū+ qon(M −Nb)b̄− ū
Γ

γ
= 0

−(N −Nb)qonū
′ + qon(N −Nb)b̄′ − ū′

Γ

γ
= 0

qoff ū− qoff b̄−
NbΓ

2(2Γ +Nbγ)
(b̄− b̄′)− b̄+ b̄′

2

Γ

γ
=

Γ

2Γ +Nbγ

qoff ū
′ − qoff b̄

′ +
NbΓ

2(2Γ +Nbγ)
(b̄− b̄′)− b̄+ b̄′

2

Γ

γ
= − Γ

2Γ +Nbγ

Γ +Nbγ/2

1−Nb(b̄− b̄′)/2
= ΓNb

(S4.99)

This finally yields

ΓNb = Γ +Nbγeff,N,M, with
1

γeff,N,M
=

1

γleg
eff

+
1

γarm
eff

, (S4.100)

with the effective friction due to legs as γleg
eff = γ + k

(
1
qoff

+ γ
k

(M−Nb)qon

qoff

)
and that due to arms γarm

eff =

γ + k
(

1
qoff

+ γ
k

(N−Nb)qon

qoff

)
. Here we see that the characteristic binding time (for example for the leg) is

τon = 1/(M −Nb)qon, due to the increased number of possibilities (M −Nb) due to multiple available arms.
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Figure S8: Effective diffusion for systems with an equal number of arms and legs all interacting with one
another (N = M) from stochastic simulations. We overlay the predictions using Eq. (S4.101) (Nb average)
and fully solving for the system of equations Eq. (S4.98) (Full solution). For reference we also show the
result of the full system in the case of N legs with M = 0 arms, from solving Eq. (S1.20). Here the values
of other parameters are qonΓ

k = 1.0 and qoffΓ
k = 0.8

Here we can explore limiting regimes. If there are as many legs as there are arms we have M = N , then
the effective friction simplifies to

ΓNb = Γ +
Nb
2

[
γ + k

(
1

qoff
+
γ

k

(N −Nb)qon

qoff

)]
, (S4.101)

where we see that the additional friction is divided by 2, as expected from the leg and arm case. One
notable difference is that here we see that the characteristic binding time τon = 1/(N −Nb)qon, due to the
increased number of possibilities due to multiple arms and legs. According to the large N limit investigated,
(N −Nb)qon does not necessarily diverge. In particular for very sticky systems (N −Nb) ' 0 and therefore
this part does not contribute significantly to the dynamics.
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If there are a large number of arms, say M � Nb, then we find γeff,M,N → γarm
eff is dominated by the arm

contributions to the effective friction.
These effective results capture well stochastic simulation results, as shown in Fig. S8.
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