Electronic Supplementary Information

Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7%

Joydip De,^{*a*} Ishan Sarkar,^{*a*} Rohit Ashok Kumar Yadav,^{*b*} Indu Bala,^{*a*} Santosh Prasad Gupta,^{*c*} Iram Siddiqui,^{*b*} Jwo-Huei Jou,^{*b*} and Santanu Kumar Pal^{**a*}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India ^bDepartment of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan ^cDepartment of Physics, Patna University, Patna-800005, India

E-mail: skpal@iisermohali.ac.in, santanupal.20@gmail.com

Table of Contents		
1.	Materials and Methods	S2-S3
2.	Synthesis and characterization details	S3-S4
3.	NMR Spectra	S5-S7
4.	HRMS Spectra	S8-S9
5.	TGA data	S9
6.	DSC Thermograms	S10
7.	POM data	S10
8.	X-ray data	S11-S12
9.	Photo-physical studies	S12
10.	Electrochemical studies	S13
11.	Computational studies	S14
12.	OLED device fabrication data	S14-S16
13. References		

1) Materials and Methods

Materials. Chemicals and solvents (AR quality) were used as received without any further purification. Column chromatographic separations were performed on silica gel (100–200 & 230-400 mesh). Thinlayer chromatography (TLC) was performed on aluminium sheets pre-coated with silica gel (Merck, Kieselgel 60, F254).

Measurements and Characterization. The instrumental details for structural characterization (NMR, HRMS, FT-IR), thermal characterization (polarized optical microscopy (POM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), X-Ray diffraction (XRD)), photophysical studies (UV-Vis & Fluorescence), electrochemical (Cyclic voltammetry), electroluminescence (OLEDs) characterization are similar to as mentioned in our previous papers and reproduced below for the reader's convenience.¹

"Structural characterization of the compounds was carried out through a combination of infrared spectroscopy (IR) (Perkin Elmer Spectrum Two), ¹H NMR and ¹³C NMR (Bruker Biospin Switzerland Avance-iii 400 MHz and 100 MHz spectrometers respectively), UV-vis-NIR spectrophotometers (Agilent Technologies, Cary 5000) and Mass spectrometry (Water Synapt G-2-s QTOF with MALDI ion source and α -cyano-4-hydroxy-cinnamic acid). IR spectra were recorded in neat form for target compounds. ¹H NMR spectra were recorded using deuterated dichloromethane (CD₂Cl₂) as solvent and tetramethylsilane (TMS) as an internal standard. All the UV-vis experiments were performed in 10⁻⁶ M CHCl₃ solutions. Cyclic Voltammetry (CV) experiments were performed on Princeton Applied Research VersaSTAT 3. The transition temperatures and associated enthalpy values were determined using a differential scanning calorimeter (Perkin Elmer DSC 8000 coupled to a controlled liquid nitrogen accessory (CLN 2)) which was operated at a scanning rate of 10 °C min⁻¹ both on heating and cooling. Thermogravimetric analysis (TGA) was carried out from 25 to 500 °C (at a heating rate of 10 °C min⁻¹) under nitrogen atmosphere on a Shimadzu DTG-60 instrument. Textural observations of the mesophase were performed with Nikon Eclipse LV100POL polarizing optical microscope (POM) provided with a Linkam heating stage (LTS 420). All images were captured using a Q-imaging camera. X-ray diffraction (XRD) was carried out by filling samples in glass capillaries using Cu-K_{α} ($\lambda = 1.5418$ Å) radiation from Xeuss (Model C HP100 fm) X-ray diffractometer from Xenocs equipped with GeniX 3D source operating at 50 kV and 0.6 mA in conjunction with a multilayer mirror and Pilatus 200 hybrid pixel detector from Dectris. For electroluminescence measurements compound 1.2 used as the dopants and OLED devices were fabricated by a solution-processed approach. In these OLEDs, a layer of 40 nm thick poly(3,4ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) was spin-coated onto the pre-cleaned and patterned ITO substrate, which was utilized as a hole injection layer. 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) was used as the host matrix, while 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) (35 nm layer) served as the electron-transporting layer. LiF and Al were used as the composite cathode. The electroluminescence (EL) spectra were recorded using a spectra scan spectroradiometer, Photo Research PR-655. The features of the current-density and brightness versus applied voltage were simultaneously obtained by combining a Keithley 2400 and PR-655. Hole-only devices (HODs) and electron-only devices (EODs) were fabricated through a combination of spin-coating and thermal deposition of layers. In HOD, PEDOT:PSS, Di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane (TAPC), and 1.2 were spin-coated on the ITO substrate, the LiF and Al were deposited by thermal evaporation. In

the case of EOD, sequentially PEDOT:PSS, TPBi, and **1.2** were spin-coated on the ITO substrate. The LiF, TPBi, and Al layers were deposited by thermal evaporation."

2) Synthesis and characterization details

Experimental Procedure:

1,3,5-tris(5-((3,4,5-tris(decyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.1):

45 ml of dry triethylamine and 15 ml of dry DMF was taken into a 100 ml two necked RB and nitrogen gas was purged into it for 10-15 mins, compound $2^{2,3}$ (305.79 mg, 0.545 mmol) was dissolved into the mixture by applying slight heating. Then Pd(PPh₃)₄ (48.534 mg, 0.042 mmol), CuI (9.35 mg, 0.049 mmol), **3.1**⁴ (1.4 g, 2.452 mmol) were added respectively. Then the temperature of the mixture was increased up to 90 °C, left for reflux for 24 h. Upon completion, the setup was brought back to room temperature and the solvent was gotten rid of in a rotary evaporator. The mixture left was extracted using diethyl ether/water, dehydrated over anhydrous Na₂SO₄ and purification was performed using column chromatography (neutral alumina, ethyl acetate: hexane- 4.5: 95.5) and yellow colored product **1.1** was obtained (66 % yield).

¹H NMR (600 MHz, CD₂Cl₂, δ ppm): 7.74 (s, 3H), 7.38-7.37 (d, J = 3.8 Hz, 3H), 7.30-7.29 (d, J = 3.84 Hz, 3H), 6.75 (s, 6H), 4.00-3.94 (m, 18H), 1.83-1.78 (m, 12H), 1.74-1.68 (m, 6H), 1.50-1.45 (m, 18H), 1.37-1.27 (m, 108H), 0.90-0.86 (m, 27H).

¹³C NMR (100 MHz, CD₂Cl₂, *δ* ppm): 153.68, 144.64, 139.73, 135.78, 133.48, 124.79, 124.06, 123.11, 117.53, 110.06, 95.36, 81.72, 74.04, 69.62, 32.55, 32.53, 30.35, 30.29, 30.26, 30.21, 30.02, 29.97, 29.95, 26.70, 23.30, 14.49.

IR (Neat, KBr, v_{max}/cm^{-1}): 2954.70, 2923.98, 2871, 2853.89, 1587.40, 1574.42, 1502.33, 1466.92, 1421.49, 1386, 1354.50, 1312.24, 1233.21, 1118.17, 825.01, 750.73.

MALDI-MS: *m/z* calcd for C₁₃₂H₂₀₅O₉S₃ (M+H)⁺: 2030.4746. Found: 2030.4637.

1,3,5-tris(5-((3,4,5-tris(dodecyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.2):

Compound **1.2** was prepared by following similar procedure to **1.1**. The target material (**1.2**) was purified by using column chromatography (neutral alumina, ethyl acetate: hexane- 4.5: 95.5) to get the product as yellow semi-solid (63 % yield).

¹H NMR (600 MHz, CD₂Cl₂, δ ppm): 7.74 (s, 3H), 7.38-7.37 (d, J = 3.8 Hz, 3H), 7.30-7.29 (d, J = 3.8 Hz, 3H), 6.75 (s, 6H), 4.00-3.94 (m, 18H), 1.85-1.78 (m, 12H), 1.73-1.68 (m, 6H), 1.50-1.45 (m, 18H), 1.37-1.26 (m, 144H), 0.89-0.86 (m, 27H).

¹³C NMR (100 MHz, CD₂Cl₂, *δ* ppm): 153.68, 144.64, 139.73, 135.79, 133.48, 124.80, 124.06, 123.14, 117.52, 110.06, 95.35, 81.71, 74.04, 69.62, 32.54, 30.35, 30.32, 30.27, 30.26, 30.01, 29.98, 29.94, 26.70, 23.30, 14.49.

IR (Neat, KBr, v_{max}/cm^{-1}): 2954.20, 2923.43, 2871.40, 2853.21, 1587.50, 1574.90, 1502.21, 1466.80, 1421.06, 1384.30, 1354.36, 1312, 1233.32, 1119.01, 826.34, 750.84.

MALDI-MS: *m/z* calcd for C₁₅₀H₂₄₁O₉S₃ (M+H)⁺: 2282.7563. Found: 2282.7468.

1,3,5-tris(5-((3,4,5-tris(tetradecyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.3):

Compound **1.3** was prepared by following similar procedure to **1.1**. The target material (**1.3**) was purified by using column chromatography (neutral alumina, ethyl acetate: hexane- 4.5: 95.5) to get the product as pale yellow solid (70 % yield).

¹H NMR (600 MHz, CD₂Cl₂, δ ppm): 7.74 (s, 3H), 7.38-7.37 (d, J = 3.8 Hz, 3H), 7.30-7.29 (d, J = 3.8 Hz, 3H), 6.75 (s, 6H), 3.99-3.94 (m, 18H), 1.83-1.78 (m, 12H), 1.73-1.70 (m, 6H), 1.50-1.45 (m, 18H), 1.36-1.26 (m, 180H), 0.89-0.86 (m, 27H).

¹³C NMR (100 MHz, CD₂Cl₂, *δ* ppm): 153.69, 144.64, 139.74, 135.80, 133.48, 124.80, 124.07, 123.14, 117.53, 110.07, 95.36, 81.72, 74.04, 69.62, 32.55, 30.37, 30.34, 30.31, 30.29, 30.27, 29.99, 26.71, 23.31, 14.50.

IR (Neat, KBr, v_{max}/cm^{-1}): 2953.50, 2923.36, 2872, 2853.13, 1587.20, 1575.47, 1502.35, 1466.83, 1421.49, 1385.80, 1354.39, 1312.01, 1233.37, 1119.93, 824.21, 721.35.

MALDI-MS: *m/z* calcd for C₁₆₈H₂₇₇O₉S₃ (M+H)⁺: 2535.0380. Found: 2535.0483.

3) NMR Spectra:

Figure S1. ¹H NMR of 1,3,5-tris(5-((3,4,5-tris(decyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.1)

Figure S2. ¹³C NMR of 1,3,5-tris(5-((3,4,5-tris(decyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.1)

Figure S3. ¹H NMR of 1,3,5-tris(5-((3,4,5-tris(dodecyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.2)

Figure S4. ¹³C NMR of 1,3,5-tris(5-((3,4,5-tris(dodecyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.2) S-6

Figure S5. ¹H NMR of 1,3,5-tris(5-((3,4,5-tris(tetradecyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.3)

Figure S6. ¹³C NMR of 1,3,5-tris(5-((3,4,5-tris(tetradecyloxy)phenyl)ethynyl)thiophen-2-yl)benzene (1.3)

4) HRMS Spectra:

Figure S9. HRMS spectrum of 1.3.

Figure S10. TGA curves of (a) 1.1, (b) 1.2 and (b) 1.3. The measurements were performed under a nitrogen atmosphere, with heating and cooling rates of 10 °C/min.

6) DSC Thermograms:

Figure S11. DSC thermograms of compound (a) **1.1** and (b) **1.3**. All the cooling and heating cycles were measured at 10 °C/min rate.

7) POM Studies:

Figure S12. Polarising optical micrographs of compound (a) **1.1** at 27.2 °C and (b) **1.3** at 26.4 °C on cooling from isotropic phase.

8) X-ray Diffraction Studies:

Figure S13. Small and wide angle (inset) X-ray diffraction patterns of compound (a) **1.1** and (b) **1.3** at 25 °C upon cooling.

Compound	Mesophase	Lattice constants	MI ^a (hk)	d _{obs} ^b (Å)	d _{cal} ^c (Å)	RI ^d (hk)	Me	Phase Φ(hk)
1.1	Col_{ob} at 25 °C	<i>a</i> = 34.35 Å	10	33.62	33.629	100.00	2	0
		<i>b</i> = 28.25 Å	11	23.89	23.89	2.16	2	0
		$\alpha = 78.19^{\circ}$	-11	19.49	19.49	2.60	2	0
			20	16.87	16.81	1.87	2	π
			h_a	4.84				
			h_c	3.75				
1.2	Col_{ob} at 25 °C	a = 36.34 Å	10	35.54	35.54	100.00	2	0
		b = 29.60 Å	11	25.17	25.17	2.13	2	0
		$\alpha = 77.93^{\circ}$	-11	20.45	20.45	1.79	2	0
			20	17.75	17.77	1.44	2	π
			\mathbf{h}_{a}	4.92				
			h_{c}	3.80				
1.3	Col_{ob} at 25 °C	a = 44.12 Å	10	41.42	41.42	37.30	2	0
		<i>b</i> = 39.53 Å	01	37.11	37.11	100.00	2	0
		$\alpha = 69.84^{\circ}$	11	34.09	34.09	96.14	2	0
			20	20.79	20.71	2.45	2	π
			02	18.44	18.55	2.61	2	π
			\mathbf{h}_{a}	4.88				
			h_c	3.73				

Table S1. The indices observed and calculated *d*-spacings and planes of the diffraction peaks for compound **1.1-1.3**.

^{*a*} MI: Miller indices. ^{*b*} d_{obs} :experimental *d*-spacing. ^{*c*} d_{cal} : calculated *d*-spacing by using the relation $\frac{1}{d_{cal}^2} = \frac{1}{(\text{Sin}\alpha)^2} \left[\frac{h^2}{a^2} + \frac{k^2}{b^2} - \frac{2 \text{ h k Cos}\alpha}{ab}\right]$ where *a*, *b* and angle α are the lattice parameters of the oblique lattice. ^{*d*} RI: Relative Intensity. ^{*e*} M: Multiplicity.

Figure S14. Electron density map of compound (a) 1.1 and (b) 1.3 in Col_{ob} mesophase.

9) Photophysical Studies:

Figure S15. UV-vis absorption and PL emission spectra of (a) **1.1**, (b) **1.2** and (c) **1.3** in chloroform solvent of 10^{-6} M concentration. Insets show the blue emission under 365 nm UV light.

10) Electrochemical Studies:

Figure S16. Cyclic voltammogram of (a) ferrocene, compound (b) **1.1**, (c) **1.2** and (d) **1.3** in HPLC dichloromethane solution of tetrabutylammonium perchlorate (TBAP (0.1 M)) at a scan rate of 50 mVs⁻¹ (Experimental conditions: Ag/AgNO₃ as reference electrode, platinum wire as counter electrode, glassy carbon as working electrode, TBAP (0.1 M) as supporting electrolyte, room temperature).

Compound	Еномо ^{<i>a</i>} (eV)	Elumo b (eV)	$\Delta E_{g,CV} c$ (eV)		
1.1	-5.48	-3.44	2.04		
1.2	-5.49	-3.42	2.07		
1.3	-5.47	-3.43	2.04		
^{<i>a</i>} Estimated from the formula $E_{HOMO} = -(4.8 - E_{1/2,Fc,Fc}^+ + E_{oxd,onset}) \text{ eV}$. ^{<i>b</i>} Estimated from the onset reduction peak values					
using $E_{LUMO} = -(4.8 - E_{1/2.Fc,Fc}^{+} + E_{red,onset}) eV$. ^c Estimated from the formula $\Delta E_{g,CV} = E_{LUMO} - E_{HOMO}$.					

11) Computational Studies:

To understand the electronic properties and frontier molecular orbital energy level of compound **1.2**, theoretical calculations were carried out with the Gaussian 09 suite of packages.⁵ A full optimization was carried out using the hybrid functional, Becke's three parameter exchange and the LYP Correlation Functional $(B3LYP)^6$ at a split valence basis set 6-31G(d,p). The optimized geometry and frontier molecular orbitals for the **1.2** are shown in Figure S17.

Figure S17. Optimized geometry and electronic distribution of frontier molecular orbitals (HOMO and LUMO) of compound **1.2**.

12) OLED Device Fabrication data:

Figure S18. Current density-voltage curves of hole-only devices (HOD: ITO (125 nm)/ PEDOT:PSS (40 nm)/ TAPC (35 nm)/ **1.2** (22 nm)/ TAPC (35 nm)/ LiF (1.0 nm)/ Al (150 nm)), electron-only devices (EOD: ITO (125 nm)/ PEDOT:PSS (40 nm)/ TPBi (35 nm)/ **1.2** (22 nm)/ TPBi (35 nm)/ LiF (1.0 nm)/ Al (150 nm)) and non-doped device (ITO (125 nm)/ PEDOT:PSS (40 nm)/ **1.2** (22 nm)/ TPBi (35 nm)/ LiF (1.0 nm)/ LiF (1.0 nm)/ Al (150 nm).

Figure S19. Photoluminescence emission spectra of CBP and 1.2 compared with the CBP:1.2 based device electroluminescent spectra.

Figure S21. AFM images of the spin-coated films of (a) CBP:1.2 (3.0 wt%) and (a) 1.2.

Table S3. Effect of **1.2** doping concentration on the turn-on voltage (V_{on}), power efficiency (PE), current efficiency (CE), external quantum efficiency (EQE), CIE coordinates, and maximum luminance of solution-processed deep-blue OLED devices with the CBP host.

Dopant concentration (wt%)	Turn-on voltage ^a (V _{on})	PE _{max} / CE _{max} / EQE _{max} ^b (Im W ⁻¹ / cd A ⁻¹ / %)	PE100/ CE100/ EQE100 ^c (Im W ⁻¹ / cd A ⁻¹ / %)	CIE _{xy} Coordinates ^d	Maximum Luminance (cd m ⁻²)
1.0	5.1	1.2/ 2.2/ 4.4	0.6/ 1.2/ 2.9	(0.16, 0.06)	1360
3.0	5.5	1.2/ 2.3/ 4.7	0.5/ 1.1/ 2.9	(0.16, 0.05)	1191
5.0	5.1	0.6/ 1.1/ 2.3	0.5/ 1.0/ 2.3	(0.16, 0.06)	1039
100	5.4	- / - / -	- / - / -	-	69

^aTurn-on voltage (V_{on}) (luminance > 1 cd m⁻²), ^b Maximum Power efficiency (PE_{max}), current efficiency (CE_{max}), and external quantum efficiency (EQE_{max}) of the device, ^c Power efficiency (PE), current efficiency (CE), and EQE at 100 cd m⁻² and ^dCIE coordinates at 100 cd m⁻².

13) References:

- 1. J. De, S. P. Gupta, S. S. Swayamprabha, D. K. Dubey, I. Bala, I. Sarkar, G. Dey, J. H. Jou, S. Ghosh and S. K. Pal, *J. Phys. Chem. C*, 2018, **122**, 23659.
- 2. W. J. Mitchell, N. Kopidakis, G. Rumbles, D. S. Ginley and S. E. Shaheen, *J. Mater. Chem.*, 2005, 15, 4518.
- 3. B. M. Schulze, D. L. Watkins, J. Zhang, I. Ghiviriga and R. K. Castellano, *Org. Biomol. Chem.*, 2014, **12**, 7932.
- 4. I. Bala, J. De, S. P. Gupta, H. Singh, U. K. Pandey and S. K. Pal, Chem. Commun., 2020, 56, 5629.
- 5. M. J. Frisch, et al. Gaussian 09 (Revision D.01) Gaussian, Inc., Wallingford CT, 2009.
- 6. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.