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Velocity dependence of Young’s modulus in DNMMs

Figure 1: Mechanical response to impact of representative Shore-A 30 samples as a
function of impact velocity, v, using a mechanical impactor. The slope of E as a function
of v for both unpruned and pruned samples is the same. This indicates that the velocity
dependence of the Young’s modulus is intrinsic to the constituent material and not dependent
on the network structure of the sample.
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Compression of DNMMs along Principal Directions

Figure 2: Compression along principal axes of unpruned DNMMs. a) Photographs of
unpruned sample before and during uniaxial compression along the three principal directions.
b) The corresponding stress vs. strain curves.

Figure 3: Compression along principal axes of pruned DNMMs. a) Photographs of
unpruned sample before and during uniaxial compression along the three principal directions.
b) The corresponding stress vs. strain curves.
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Transverse strain measurement

Figure 4: Edge detection for Poisson’s ratio measurements.

A custom-designed LabVIEW edge-detection software was used to measure the changes in

height average width of DNMM samples during the linear impact experiments (Fig. 4. Given

the irregular edges of DNMM samples, the average width is estimated by the software at

each frame and the transverse strain, εtransverse, is calculated from the changes in average

width.
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Bulk vs. Shear modulus

Figure 5: Bulk vs. Shear modulus. Tested for same unpruned structures, using three different
printing materials at impact velocities between 0.1−1.5 m/s (increasing marker size indicates
increasing impact velocity). Bulk and shear remain coupled for all tested samples in all tested
conditions.

Transmitted Force Model

Figure 6: Impactor of mass mi and impact velocity v0 at the moment of contact with delicate
target coupled to protective material
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The time-dependent force applied to the DNMM measured by the target (load plate) can

be derived based on the following expressions, derived in a similar manner by Argatov and

Jokinen.1 The acceleration (üp(t)) of the protective material mass coupled to the mass of

the impactor (m = mi+mp) is related to the spring constant of the protective material (kp),

müp(t) = −kp
(
up(t)− ut(t)

)
(1)

where up(t) is the position of the top surface of the protective material and ut(t) is the

position of the target. The stress imposed on the target is then,

− kp
(
up(t)− ut(t)

)
= Atσt(0, t), (2)

where At is the contact area of the target. Using D’Alembert solution, Eq.(1) and Eq.(2)

become,

müp(t) = −kp
(
up(t)− ut(t)

)
(3)

kpup(t)−
AtEt
ct

u̇t(t)− kput(t) = 0 (4)

Taking the Laplace Transform of Eq.(3) and Eq.(4), we obtain,

u∗p(s)
(
s2 + ω2

0

)
− u∗t (s)ω2

0 = v0 (5)

u∗p(s)ω
2
0 − u∗t (s)

(
2ηs+ ω2

0

)
= 0 (6)

where ω2
0 = kp

mp
and 2η = EtAt

ctmp
. Solving for u∗p(s) and u∗t (s) and taking the inverse Laplace

Transform,

up(t) =
v0
2η

(
1− e−αtcos(ωt) + λe−αtsin(ωt)

)
(7)

ut(t) =
v0
2η

(
1− e−αtcos(ωt)− βe−αtsin(ωt)

)
(8)
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where ω = ω0

√
1− γ2, α = ω0γ, λ = 2−γ

4γ
√

1−γ2
, β = γ√

1−γ2
, and γ = ω0

4η
= ct

2EtAt

√
mfkf

Since we are interested in solving for Ft(t) and recalling that Ft(t) = EtAt
ct
u̇t(t). Solving

for u̇t(t) using Eq.(8), we obtain,

u̇t(t) =
vo
2η
e−αt

(
(αβ + ω)sin(ωt) + (α− βω)cos(ωt)

)
=
vo
2η
e−αt

(
ω0√

1− γ2
sin(ωt)

) (9)

Submitting the appropriate constants into Eq.(9),

u̇t(t) =
vo
2η

ω0√
1− γ2

e−αtsin(ωt)

= 2vo
γ√

1− γ2
e−αtsin(ωt)

(10)

Substituting Eq.(10) into the force expression,

Ft(t) = 2vo
EtAt
ct

γ√
1− γ2

e−αtsin(ωt)

= 2vo
EtAt
ct

γ√
1− γ2

e−ω0γtsin
(
ω0t
√

1− γ2
) (11)

Since the sonic wave speed in the target is ct =
√

Et
ρt

and the acoustic impedance is

zt =
√
Etρt, Eq.(11) can be rewritten as,

Ft(t) = 2voztAt
γ√

1− γ2
e−ω0γtsin

(
ω0t
√

1− γ2
)

(12)

Therefore, the stress experienced by the target is,

σt(t) = 2vozt
γ√

1− γ2
e−ω0γtsin

(
ω0t
√

1− γ2
)
, (13)
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Peak transmitted force

Taking the derivative of Eq.(11) and setting it = 0,

F ′t(t) = 2vo
EtAt
ct

ω0γ√
1− γ2

(√
1− γ2cos

(
ω0t
√

1− γ2
)
− γsin

(
ω0t
√

1− γ2
))

e−ω0γt = 0

(14)

This implies that either e−ω0γt = 0 or
√

1− γ2cos
(
ω0t
√

1− γ2
)
−γsin

(
ω0t
√

1− γ2
)

= 0

The critical time at peak force (tc) is,

√
1− γ2cos

(
ω0t
√

1− γ2
)
− γsin

(
ω0t
√

1− γ2
)

= 0

=⇒ tan

(
ω0t
√

1− γ2
)

=

√
1− γ2
γ

tc =
1

ω0

√
1− γ2

tan−1

(√
1− γ2
γ

) (15)

Eq.(15) indicates that tc increases with decreasing γ, in other words, when the acoustic

impedance of the DNMM decreases (see below).

The maximum transmitted force, Ft,max = Ft(tc), can than be written as

Ft,max = vomγω0

√
1

γ2
e
−
γtan−1

(√
1−γ2
γ

)
√

1−γ2 (16)

Transmitted Impulse

To obtain the transmitted impulse, Ft(t) needs to be integrated from t = 0 to t = td where,

td is the impact duration. td can be found by solving for the time using in u̇t(td) = 0. The

duration of the impact is then,

td =
π

ω
=

π

ω0

√
1− γ2

=
π√

kp
m

√
1− φ2kpm

(17)
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Integrating Ft(t) from t = 0 to t = td we obtain the transmitted impulse,

It =
vo
m

(
1 + e

− πφ
√
kpm√

1−φ2kpm
)

(18)

Which can also be recast as a function of Ep and ρ,

It =
vo

ρAplp

(
1 + e

− Apπφ
√
Epρ√

1−A2
pφ

2Epρ

)
(19)

Recalling that γ = ct
2EtAt

√
mkp Eq.(11) can be simplified further,

Ft(t) = 2vo
EtAt
ct

γ√
1− γ2

e−ω0γtsin
(
ω0t
√

1− γ2
)

= 2vo
EtAt
ct

ct
2EtAt

√
mkp√

1− γ2
e−ω0γtsin

(
ω0t
√

1− γ2
)

=
vo
√
ω2
0m

2√
1− γ2

e−ω0γtsin
(
ω0t
√

1− γ2
)

Ft(t) =
voω0m√
1− γ2

e−ω0γtsin
(
ω0t
√

1− γ2
)

(20)

Eq.(20) can be expressed in terms of kp and m,

Ft(t) =
vo

√
kp
m3√

1− φ2kpm
e−kpφtsin

(
t

√
kp
m

√
1− φ2kpm

)
(21)

where φ = ct
2EtAt

.

Alternatively, Eq. (21) can be expressed in terms of ρ and Ep, recalling that m = ρAplp

and kp = EpAp
lp

, where Ap and lp are the crossectional area and length of the protective

material, respectively.

Ft(t) =

vo
Apl2p

√
Ep
ρ3√

1− φ2EpA2
pρ
e
−
EfAp

lp
φt
sin
( t
lp

√
Ep
ρ

√
1− φ2EpA2

pρ
)

(22)
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The γ parameter

γ is a dimensionless parameter defined as,

γ =
ω0

4η
=
ct
√
kpmp

2EtAt
(23)

The stiffness (kp) and density (ρp) of the DNMM can be defined as,

kp =
EpAp
hp

mp = ρpAphp

(24)

where hp is the height of the DNMM. Using Eq.(24) in Eq.(23),

γ =
ct

2EtAt

√
EpAp
hp

ρpAphp

=
ct

2Et

Ap
At

√
Epρp

(25)

Recalling the definition of the acoustic impedance, z =
√
ρM and the sonic wave speed,

c =
√
M/ρ, and the longitudinal modulus, M = B + 4

3
µ = (1−ν)

(1+ν)(1−2ν)E = f(ν)E. B is the

bulk modulus, µ is the shear modulus and ν is the Poisson’s ratio. We can re-write Eq.(25)

as

γ =
Ap
2At

√
Mt/ρt
Et

√
ρfEp

=
Ap
2At

1− νt
(1 + νt)(1− 2νt)

√
Mt/ρt
Mt

√
ρfEp

=
Ap
2At

1− νt
(1 + νt)(1− 2νt)

√
(1 + νf )(1− 2νp)

1− νp

√
ρfMp√
ρtMt

=
Ap
2At

(
1− νt

(1 + νt)(1− 2νt)

√
(1 + νp)(1− 2νp)

1− νp

)
zp
zt

=
Ap
2At

f(νt)√
f(νp)

zp
zt

(26)
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This shows that γ is not just a function of the acoustic impedance ratio of the DNMM

and the target, thus controlled by the density and elastic modulus of the DNMM, for a

given target, but also related to the Poisson’s ratio of the components. Specifically, f(ν) is

asymptotic at the physical limits of ν, which has a significant impact on γ as shown below.

Figure 7: f(ν) vs. ν

We can simplify Eq.(26) by assuming that the load plate is made of steel with νt ≈ 0.3,

γ ≈ Ap
2At

(
1.35

√
(1 + νp)(1− 2νp)

1− νp

)
zp
zt

(27)

Naturally, γ is highly affected by the Poisson’s ratio of the protective material and how

the acoustic impedance trends with Poisson’s ratio. The relation between ν and zp is going

to depend on the class of materials in question and will be the focus of a future study.
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