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1. Supplementary Fig.S1 and Fig.S2

 
Fig.S1: Conformation evolution of a polymer adsorbed on the cylinder without active force ( ) and with active force (𝑓𝑎 = 0.0

). 𝑓𝑎 = 5.0

Fig.S2 Probability distribution functions of  for various Rs at  and . The polymer is in the spiral state, the 𝛼 𝜅 = 10 𝑓𝑎 = 10.0

distribution of  is very narrow. The peaks of P( ) shift to the small  with the increase of R because the polymer is in the spiral 𝛼 𝛼 𝛼

state at R>=2, where the diameters of disk-like spirals are similar. For R=1, the distribution is broad, denoting a helix-like state of 
polymer. 
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Fig. S3:  Phase diagram in N-  plane (a) and R-  plane (b) characterizing the helix-like and straight state for polymer in an 𝜅 𝜅  

equilibrium state at N=80, . The red point (○) and blue triangle (∆) represent the helix-like state and straight state, respectively. 𝑓𝑎 = 0

The typical snapshots are shown in (c) and (d). Typical snapshots are plotted corresponding to systems denoted by( ) for (c) and 𝜅,𝑁

( ) for (d) . The gray-dash line is the eye-guided phase boundary. 𝜅,𝑅

Fig.S4: The mean maximum wrapping number, , as a function of bending rigidities  (N=80 and R=1). The error bar is the 〈𝛼〉 𝜅



standard deviation. The dashed line shows , which is used as the criteria to distinguish the helix-like state and straight state. 
〈𝛼〉 =

1
4

It can be found that, without active force, the value of  is a little bit larger than 0.25. we assign the polymer configuration to the 〈𝛼〉

helix-like state based on our criteria. So, we do not pay attention to the transition of polymer configuration due to the decrease of R 
for the equilibrium system. Instead, we focus on the qualitative difference of phase boundary between active polymer and passive 
polymer in the main text. 

2. The power-law relation of  and N for the spiral at R=5.𝜔

We use Equation 4 and Fourier transform (FT) to verify the relation between the angular velocity  and the chain length N for 𝜔

R=5 . The result also shows the power-law relation ~ (Fig.S3).𝜎 𝜔 𝑁 ‒ 0.42

Fig.S5 Rotation speed  as a function of chain length . The  was calculated by Equation 4 in the main text and 𝜔 𝑁 𝑎𝑡 𝜅 = 5, 𝑅 = 5𝜎 𝜔

Fourier transform method. ~  is obtained. 𝜔 𝑁 ‒ 0.42

3. Theory for a general Archimedean spiral in two dimensions.

Fig.S6 Schematic diagram of a general Archimedean spiral.  is the linear density of active force, and  is the infinitely small 𝐹𝑎 𝑑𝑙

quantity of the contour at 𝑟⃗.



To understand why there exists a power-law relation between rotational angular velocity  and chain length N, we assume that the 𝜔

chain morphology could be described by a general Archimedean spiral (Fig.S5), the polar equation of which is given as
𝜌 = 𝑐𝜗𝜈     (1)

where c is a constant that controls the distance between loops,  an exponent parameter. At = 1, the equation is for the normal 𝜈 𝜈 

Archimedean spiral. For Fermat's spiral , = 0.5. The coordinate vector along the contour as shown in Fig.S4:𝜈 

                          𝑟⃗ = (𝑥,𝑦) = (𝜌𝑐𝑜𝑠𝜗,𝜌𝑠𝑖𝑛𝜗)     (2)          

We assume the active force was exerted paralleling to the contour with linear density . The viscosity coefficient of unit length is 𝐹𝑎

 (Here we use the same symbol to the viscosity coefficient of a single monomer in the main text), rotational angular velocity .  𝛾 𝜔

The contour length of the spiral is L=N  ( =1, the length unit we used). 𝜎 𝜎

At the position, , the active force of unit length is 𝑟⃗

𝑓𝑎 = 𝐹𝑎 ∗ (𝑑𝑥
𝑑𝑙

,
𝑑𝑦
𝑑𝑙 ) = 𝐹𝑎 ∙ (𝜈𝜗 ‒ 1𝑐𝑜𝑠𝜗 ‒ 𝑠𝑖𝑛𝜗

1 + 𝜈2𝜗 ‒ 2
,
𝜈𝜗 ‒ 1𝑠𝑖𝑛𝜗 + 𝑐𝑜𝑠𝜗

1 + 𝜈2𝜗 ‒ 2 )    (3)  

Thus the total active torque, , is given by Γ1

Γ1 =
𝐿

∫
0

𝐹𝑎 ∗ |𝑟⃗ × 𝑑𝑙| =
𝜗

∫
0

|𝑟⃗ × 𝑓𝑎|𝑑𝜗 =
𝑐2𝐹𝑎

2𝜈 + 1
𝜗2𝜈 + 1    (4)

Similarly, the drag torque, , isΓ2

Γ2 =
𝜗

∫
0

|𝑟⃗| ∗ 𝜔|𝑟⃗| ∗ 𝛾𝑑𝜗 = 𝜔𝛾𝑐3
𝜗

∫
0

𝜗6𝜈 + 𝜈2𝜗6𝜈 ‒ 2𝑑𝜗

=
𝜔𝛾𝑐3𝜗3𝜈

3
∗ ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚([ ‒

1
2

,
3𝜈
2 ],[3𝜈

2
+ 1], ‒

𝜗2

𝜈2)       (5)

Where  is a Gaussian hypergeometric function with form:ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚()

   
ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚([𝑎,𝑏],[𝑐],𝑧) =

∞

∑
𝑛 = 0

(𝑎)(𝑛)(𝑏)(𝑛)

(𝑐)(𝑛)
∗

(𝑧)𝑛 
𝑛!

             (6)

:(𝑞)(𝑛) 𝑖𝑠 𝑃𝑜𝑐ℎℎ𝑎𝑚𝑚𝑒𝑟 𝑠𝑦𝑚𝑏𝑜𝑙

𝑞(𝑛) = { 1
𝑞(𝑞 + 1) ∙∙∙ (𝑞 + 𝑛 ‒ 1) �       𝑖𝑓 𝑛 = 0

𝑖𝑓 𝑛 > 0

In the stable state, , then we could get the angular velocity of rotation :Γ1 = Γ2 𝜔

𝜔 =
3𝐹𝑎

(2𝜈 + 1)𝛾𝑐𝜗𝜈 ‒ 1 ∗ ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚([ ‒
1
2

,
3𝜈
2 ],[3𝜈

2
+ 1], ‒

𝜗2

𝜈2)
    (7.1)  

if we set  as the content, then we get𝐹𝑎 = 10,  𝛾 = 10

𝜔 =
3

𝑐 ∗ (2𝜈 + 1)𝜗𝜈 ‒ 1 ∗ ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚([ ‒
1
2

,
3𝜈
2 ],[3𝜈

2
+ 1], ‒

𝜗2

𝜈2)
    (7.2)  

The contour length of the spiral is:

𝐿 =
𝜗

∫
0

𝑐 ∗ 𝜗2𝜈 + 𝜈2𝜗2𝜈 ‒ 2𝑑𝜗 = 𝑐𝜗𝜈 ∗ ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚([ ‒
1
2

,
𝜈
2],[𝜈

2
+ 1], ‒

𝜗2

𝜈2)  (8)



Fig.S6: (a) The power-law relation of  and N fitted by numerical calculation of Equation 7.2 and Equation 8 at various  with N 𝜔 𝜈𝑠

from 10 to 300. (b) The rotation angular velocity calculated by simulations in two dimensions, , and the corresponding 𝜔~𝑁 ‒ 0.44

general Archimedean spiral, . 𝜌 = 0.58𝜗0.77

It is hard to analytically calculate the hypergeometric function to get the  power-law relation, so, we calculate the  (Equation 𝜔~𝑁 𝜔

7.2) and N (Equation 8) via choosing variable  from 2.0 to 50.0 for various s. Then, we obtain the power-law via linear fitting of 𝜗 𝜈

log( ) and log( ). The results are given in Fig.S6(a). It could be found that there indeed exists a power-law relation between N and 𝑁 𝜔

 at large N; the power exponent depends on the value of  We have tested the  from 0.5 to 1.5, the power-law relation remains.𝜔 𝜈. 𝜈

We perform additional simulations (namely, a polymer with various chain lengths are confined in two dimensions (2D)) to validate 
the theory. The simulation method is the same as that in the main content, except all simulations are in 2D. We found that 

 for 2D spiral and the corresponding equation is .𝜔~𝑁 ‒ 0.44 𝜌 = 0.58𝜗0.77

4. Supplementary Movie.S1-S3

MovSI.avi shows the rotation of a polymer in the spiral state at N=80, =10, = 1.𝑓𝑑 𝜅

MovS2.avi displays the double layer of a polymer at N=80, =15, = 1.𝑓𝑑 𝜅

MovS3.avi displays the desorption of a polymer at N=80, =30, =1 .𝑓𝑑 𝜅

MovS4.avi shows the re-adsorption of a polymer at N=80, =30, =1.𝑓𝑑 𝜅

MovS5.avi gives the turning-back motion of a polymer at N=80, =30, = 50.𝑓𝑑 𝜅

5. The Simulation Method of polymer without active force

All simulations are performed by LAMMPS software. Similar to the active system. The simulation box is 80 80 100  with 𝜎 × 𝜎 × 𝜎

periodic boundary conditions in all directions. Reduced units are used in the simulation by setting m=1, =1, and σ = 1. The friction 𝜀

coefficient, γ = 10. The difference is that we use the simulated annealing method to get the equilibrium conformation of the polymer. 

 The temperature was decreased from  to  for the sufficient relaxation of the polymer. Then, each case was 𝑘𝐵𝑇 = 4.5 𝑘𝐵𝑇 = 1.2

further run (  a long time of 3*104τ with a time step, ∆t = 0.001τ.𝑎𝑡 𝑘𝐵𝑇 = 1.2)


