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S1. Brief survey of hemorheological assays
Common coagulation assays include measurements of activated clotting time (ACT), 

activated partial thromboplastin time (aPTT), prothrombin time (PT), thromboelastography 
(TEG), rotational thromboelastometry (ROTEM), platelet count (PLT), and heparin 
concentration (HC), among others [1-3]. Importantly, the majority of these traditional 
coagulation assays are performed in vitro, and they all share two distinct features.

The first critical aspect is that in the existing techniques, the propensity of blood to coagulate 
is inferred from processes initiated by chemical triggers. In other words, these are end-point 
measurements, provocative, and non-physiologic in nature because the coagulation is induced by 
strong stimuli as kaolin, glass beads, or calcium [4]. In addition, some of them are contact-based 
methods that are likely to strain the blood sample beyond the linear viscoelastic regime, delay 
clot formation, and modify fibrin network structure, which ultimately leads to significant intra- 
and inter-subject variability. Moreover, the time associated with the sample collection and 
treatment as well as the need to reach the endpoint of clot formation are serious limitations in 
situations where the status of blood changes rapidly and needs to be managed continuously. 

The second common characteristic is more subtle. Like most rheological measurements, 
these assays probe bulk properties. This means that the rheological properties are considered 
scale-independent and the fluid under test is regarded as continuum matter. Its detailed molecular 
structure and dynamics are all included in effective, macroscopic properties of viscoelasticity. 
This usually suffices for common homogeneous fluids but misses a number of details in the case 
of complex, multi-component fluids such as blood.

Microrheology, on the other hand, is concerned with how viscoelastic materials flow as a 
function of length scales [5]. As such, physical details at submicron and even molecular scales 
are probed directly and over a large spectrum of frequencies based only on thermal forces [6]. In 
special cases, when the different physical scales are appropriately considered, the macro- and 
micro-rheological properties can be directly compared [7, 8]. In the general case of complex 
heterogeneous fluids, however, the homogenization of the mechanical properties is intrinsically 
scale-dependent [9].  

As such, the issue is not whether the microscopic measurements correctly reflect the 
macroscopic elasticity and viscosity of a fluid but rather if microrheology can provide 
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information beyond what is accessible at macroscales. In the case of blood, microscale 
measurements could examine, for example, the viscoelastic properties of molecular components, 
e.g. fibrin and other proteins [10, 11], while isolating the influence of influence of the much 
larger erythrocytes.

S2. Optical microrheology
In our experiments, both in artificial hemo-systems and on whole blood, we performed optical 
microrheology measurements by using a spatio-temporal coherence-gated dynamic light 
scattering (DLS) technique, whose implementation is optical fiber-based and can be used to 
measure microrheological properties of complex fluids passively based on the fluctuations of the 
scattered light [7, 12, 13], as shown in Figure S1. This technique allows accessing the temporal 
scales of interest where the proposed rheological model is valid.
To perform the measurements, the MMF is held by using a fiber holder (Newport model FPH-J) 
that allows holding the fiber straight. The fiber holder, in turn, is mounted on a fiber chuck 
holder (Newport model 561-FC), and the whole assembly is mounted on a 3D translation stage. 
In this way, we can control the position of the fiber tip three-dimensionally (transverse position 
and depth within the sample), to keep the fiber tip far from the walls and well within the sample, 
while always holding it straight. The general purpose, disposable 1 mL syringe is also held 
straight (vertically) by using a home-made holder (not shown in Fig. S1), and it has an internal 
diameter of 4.5 mm.

 

Figure S1. Schematic description of the coherence-gated DLS concept and how the measurements 
were performed (see text for details). The graphical illustration in the inset represents the region 
accessible by coherence-gated DLS: a picoliter-sized coherence volume where the RBCs probe 
their environment at small spatial and temporal scales. 



A unique feature of our measurement is that the effects of multiple scattering and light 
absorption can be safely neglected. Specifically, the measurement relies on single-scattering: the 
optical signal measured comes from a picoliter-sized coherence volume, as determined by the 
size of the core of the optical fiber and the coherence length of the broadband light source, where 
single scattering amply dominates independently of the macroscopic scattering characteristics of 
the medium [12, 14]. Thus, interpreting the measured signal does not require any assumption 
regarding scattering regimes or models of diffusion, while the dynamics of complex systems can 
be measured over broad ranges of optical and temporal regimes using the same instrument [7, 
13]. In this regime of single scattering, the effect of absorption is simply an attenuation of the 
optical signal and does not affect its dynamics and the subsequent temporal analysis of the 
fluctuations [7, 13].

Compared to other optical microrheology approaches, coherence-gated DLS is implemented in 
an all-optical-fiber photonic platform. It provides a compact and robust testing environment and, 
thanks to the endoscopic-type probe available in the setup, it also allows an easy integration with 
medical machine as demonstrated in [15] for passive, real-time and continuous monitoring of 
blood condition in clinical settings.

We would like to emphasize that the microrheology outcomes complement the information 
provided by bulk rheology because it examines the role of viscoelastic properties of plasma 
while effectively isolating the influence of erythrocytes. Blood is primarily a mixture of 
erythrocytes and plasma, and macroscopically its rheological properties are largely determined 
by the mechanical properties of the erythrocytes. Microscopically, on the other hand, the 
erythrocytes probe their own environment over much smaller spatial scales in much shorter 
times. In other words, over the spatial and temporal scales typical to a microrheology 
measurement, the complex fluid tests itself based solely on intrinsic thermal forces: the 
particulate component of blood (erythrocytes) tests the viscoelasticity of the fluid component 
(plasma + macromolecules)

S3. Maxwell parameters extraction from coherence-gated DLS spectra
The recorded coherence-gated DLS power spectra, , were acquired in the frequency range 𝑃(𝑓)
from 1 Hz to 10 kHz, with 1 Hz resolution, and integration time of 30s. The spectral analysis of 
the dynamic signal is based on a multi-Lorentzian approach [8, 13]. Basically, the measured 

 was decomposed into a collection of discrete contributions, 𝑃(𝑓)

 with  being the frequency,  the relative amplitude, 
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found that two Lorentzian components (N=2) were sufficient to describe the overall shape of 
 in all cases. A typical example of this signal analysis is illustrated in Figure S2, where we 𝑃(𝑓)

present  measured from whole blood, right after drawing the sample (Figure S2(a)) and after 𝑃(𝑓)
30 min (Figure S2(b)), together with the full Lorentzian reconstruction, as indicated. As can be 
seen, our approach fully describes these spectra with significantly different shapes.



The spectral decomposition of  was then used to evaluate the mean squared displacement 𝑃(𝑓)

(MSD) of the diffusing particles (erythrocytes), , where 
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reflection geometry, and  is the refractive index of the medium. The results are illustrated in the 𝑛
inset panels in Figure S2. Note that the implicit normalization of the spectral decomposition 
allows treating  as a probability density function. Then, the MSD, which is determined by 𝑃(𝑓)
the shape of , was used to estimate the complex viscoelastic moduli for tracers of known 𝑃(𝑓)
size. 
According to the approach described in [16, 17], the magnitude of the viscoelastic modulus is 

determined as , where is the 
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logarithmic slope of the MSD curve. Then, we extracted (i) the elastic component, 
, (ii) the viscous component, , 𝐺'(𝜔) = |𝐺 ∗ (𝜔)|𝑐𝑜𝑠(𝜋𝛼(𝜔)/2) 𝐺''(𝜔) = |𝐺 ∗ (𝜔)|𝑠𝑖𝑛(𝜋𝛼(𝜔)/2)

and also (iii) the loss tangent, . The parameter , which is calculated 𝑡𝑎𝑛𝛿(𝜔) = 𝐺''(𝜔) 𝐺'(𝜔) 𝛼(𝜔)
from the time-dependent logarithmic slope of the MSD, lies between the limits of elastic 
confinement ( ) and viscous diffusion ( ), and describes the transport properties of the 𝛼 = 0 𝛼 = 1
diffusing particles in the intermediate viscoelastic regimes of complex fluids. 

Figure S2. Power spectra with significantly different shapes corresponding to whole blood (a) 
right after drawing the sample and (b) after 30min of unperturbed evolution. The continuous red 
lines represent the fit with the sum of weighted Lorentzians while the blue dashed line, , 𝑓 ‒ 2

indicates the frequency behavior corresponding to a normally diffusive particle in a Newtonian 
fluid. The insets show the associated mean-square-displacements (MSD) of the diffusing probes 
(erythrocytes); the dotted red lines indicate a linear MSD evolution for a random walker in a 
Newtonian fluid. Deviations of the MSD from linear dependence are indicative of a viscoelastic 
environment. 

In a complex fluid such as blood, detecting a dynamic signal in the high frequency window of 
our measurements does not necessarily imply that the RBCs are free to move over length scales 
of the order of, or larger than, their size. Nevertheless, this condition where the RBCs remain 
mobile exists during the entire measurement duration as verified by the fact that a dynamic 



signal is detected at all times, from where the microrheological properties of plasma are 
retrieved. If the RBCs form a solid clot and their movement ceases in the coherence volume, the 
signal measured would report no fluctuations and the power spectrum would be flat the level of 
the noise floor; however, this never happens in our experiments. 

Additional experimental facts and observations are:

(i) All the measurements were performed without externally promoting clotting and without 
adding chemical triggers that initiate the coagulation cascade. During the measurement, 
blood rests unperturbed in the vial without external mechanical stimuli.

(ii) Visual inspection of the samples after the measurements indicates that blood did not form a 
rigid clot and it flows inside the syringe if gently agitated.

(iii) The optical fiber is placed halfway the column of liquid such that the coherence volume is 
constantly replenished with RBCs during the measurement, far from the bottom of the vial 
where aggregation effects would be more appreciable due to the increasing concentration 
resulting from sedimentation.

Such factors do not eliminate the fact that the status of blood changes and RBCs aggregate over 
time in the perspective of the bulk scope. However, the blood in the spatial and temporal scale of 
the DLS measurement would look like “liquid” as long as the RBC probes are still mobile over 
tens to hundreds of nanometers (high frequency regime of our experiments).

Furthermore, if sedimentation effects contribute to our measurement, they could be easily 
detected and even measured because DLS measurements can discriminate between the diffusive 
and advective motion of the scattering centers [18-22]. Sedimentation is an example of the later. 
Depending on the specific Péclet number, the advective motion associated to directional flow or 
sedimentation affects gradually the low frequencies and, eventually, leads to a Gaussian shape of 
the power spectrum as opposed to the Lorentzian shape typical to diffusive motion [18-22]. 
Thus, the fact that the measured power spectra have pure Lorentzian shapes, as shown in Fig. S2, 
is a direct experimental demonstration that the dynamic signal is solely determined by diffusive 
motion in the frequency range of interest.

Finally, as explained above, the measured optical signal originates from an optically isolated 
picolitre-sized coherence volume, where single scattering amply dominates. In this regime, 
changes in the concentration of scattering particles in the coherence volume result in variations 
of the magnitude of the scattered signal but not on the temporal characteristics of the 
fluctuations; therefore, the shape of the power spectrum, which contains the useful information, 
does not depend on the density of scattering particles. This feature of the coherence-gated DLS 
technique has proved advantageous to retrieve simultaneously the diffusion coefficient (from the 
shape of the spectrum) and the sedimentation speed (from the time evolution of the magnitude of 
the spectrum) of scattering particles subjected to significant sedimentation effects [13, 23].

The parametric description in terms of our model was realized by fitting simultaneously the three 
curves , , and  to the Maxwell rheological model described above to obtain 𝐺'(𝜔) 𝐺''(𝜔) 𝑡𝑎𝑛𝛿(𝜔)

a single set of fitting parameters ( ) that can describe the three curves over a broad 𝜂0,𝜂1,𝜏1

frequency range. Even though the measurement is limited at high frequencies by the detection 
noise and, at low frequencies, by potential effects of sedimentation and aggregation, the analysis 
is sufficiently robust to reliably perform an optical micro-rheology measurement over a broad 



frequency range from 1 to 104 Hz where our continuous rheological model is valid. The results 
are summarized in Figure S3. As can be seen, the proposed Maxwell model is sufficient to 
describe the microrheological functions. The fact that the measured properties are well described 
over the frequency range of interest is in itself a validation for our physics-based model, which 
goes beyond a simple description of generic viscoelastic elements [24, 25]. 

The Pearson coefficient , where are the experimental values and 

 𝑟2 = 1 ‒

∑
𝑖

(𝑦𝑖 ‒ �̂�𝑖)2

∑
𝑖

(𝑦𝑖 ‒ 𝜇)2

�̂�𝑖,𝜇 

average, and  are the fitted values for , , and  was larger than 0.91 for the 𝑦𝑖  𝐺'(𝜔)   𝐺''(𝜔) 𝑡𝑎𝑛𝛿(𝜔) 
data shown in Figure S3. Moreover, the results clearly capture the main characteristics of the 
physical condition of blood viscoelasticity after 30min. As seen in Figure S3(b), a significant 
reduction of the viscous component, and therefore of the loss tangent, has occurred (note the 
logarithmic scale) in comparison to the initial conditions shown in Figure S3(a).

Figure S3. Frequency-dependent micro-rheological functions , , and the associated 𝐺'(𝜔) 𝐺''(𝜔)
, corresponding to  shown in Figure 2(a) and 2(b), respectively. The continuous lines 𝑡𝑎𝑛𝛿(𝜔) 𝑃(𝑓)

denote the micro-rheological functions estimated over an extended frequency range, while the 
empty markers indicate the fitting to the rheological model within the frequency range of interest, 
which is indicated by the two vertical dotted-dashed lines.

S4. Incipient whole-blood coagulation histogram distributions
The results in Section 3.3.3 in the main text are from a population of patients (See Materials and 
Methods). Figure S4 shows a more detailed analysis of the results presented in Figure 4 of the 
main text. Specifically, in Figure S4 we show the evolution of the histograms of the viscoelastic 
parameters across the entire population of patients, for the incipient coagulation whole blood in 
unperturbed samples under natural conditions. Basically, in Figure 4 of the main text only the 
first two moments of the distribution are plotted (mean values with their corresponding standard 
deviation) while in Figure S4 we show how the entire distribution evolves.



Figure S4. Distribution of viscoelastic parameters: ‘long-term’ evolution within a coagulation state 
(whole blood). The Maxwell parameters are extracted from fitting the complex viscoelastic 
moduli, calculated from , simultaneously to Eq. (1-3) in the main text.𝑃(𝑓)

S5. Early-stage discrimination of coagulation propensity. 
In this section, we demonstrate how our microrheological model can capture the different 
evolution of viscoelasticity when the blood coagulability is purposely inhibited through a 
pharmaceutical intervention. Figure S5(a) compares typical the early stages evolutions of the 
rheological parameters corresponding to normal and heparinized blood (note the logarithmic 
scale on the vertical axis). The effect of the anticoagulant is evident. The viscoelastic parameters 

 and  of heparinized blood are significantly smaller in comparison to the case of normal 𝜂1 𝜏1

blood because heparin inhibits the gradual increase of the viscoelastic component that 
progressively that appears naturally during blood coagulation. It can also be noted that, on 
average, the set of parameters vary less in the case of heparinized blood; note that  for normal 𝜂1

blood starts to ramp up after the first 5 min indicating the gradual increase in the influence of the 
viscoelastic element.



Figure S5. (a) Short-term temporal evolution of the Maxwell parameters after full systemic 
anticoagulation (dashed line and empty markers) for a representative case; the normal blood 
measurement before the administration of the anticoagulant is plotted for reference (solid line and 
markers). Panels (b)-(d) show the short-term evolution of the Maxwell model parameters for the 
entire population of patients, for the two different states of blood, normal and fully heparinized; 
the error bars illustrate the inherent interpatient variability: (b) the viscous components  and  , 𝜂𝑜 𝜂1

(c) the relaxation time of the viscoelastic element,  , and (d) the purely elastic  calculated 𝜏1 𝑘1

based on the ratio viscous coefficient  and the relaxation time . In panel d) the significant 𝜂1 𝜏1

reduction of the variability across the population of patients due to the effect of the anticoagulant 
is indicated by the shaded region. Time t= 0 represents the starting of the DLS measurement 
immediately after the blood draw before and after the heparin administration. See text for details. 
The interpatient variability is represented by the error bars that indicate the standard deviation 
across the 23 subjects; time t=0 is the starting of the DLS measurement immediately after the 
blood draw. 

To capture the anticoagulant action immediately after administration, we conducted a 
comparison over 5 min with respect to the normal condition for the entire population. The results 
of this comparison are summarized in Figure S5(b)-(d). Notably, a similar background viscosity 

 was obtained for both normal and heparinized blood, which indicates that the main difference 𝜂0

between these two states of coagulation relies primarily in the viscoelastic component. 
Something that can also be noted is that our measurement captures the ongoing effect of heparin, 
as indicated by the decreasing trend of . 𝜂1

The significant effects of the anticoagulant can be clearly observed in Figure S5(c): aside 
from a smaller average value of  (lower elasticity), the lesser extent of the error bars 𝜏1

demonstrates a general feature that extends over the entire population. Even though the elastic 
components differ significantly at the initial stages, this variability reduces after heparinization 
and converges towards a narrower distribution corresponding to a more Newtonian fluid. 



Finally, the ongoing effect of heparin can also be seen in the decreasing trend of the elastic 
component , which is plotted in Figure S5(d). One can safely conclude that the effect of 𝑘1

heparin is effectively traced by the changes in the values of the viscoelastic element while  𝜂0

reflects the relatively constant background viscosity. These changes are significant taking into 
consideration that the changes occurred at early time as well as that both normal and heparinized 
blood were tested with any stimulus to accelerate the coagulation process.

In addition to the above results, one can perform some statistical analysis to verify the 
difference in the evolution of the Maxell parameters between the two states. Statistical analysis 
can be either 1) descriptive analysis or 2) inferential analysis. The descriptive analysis helps in 
describing basic features of the data in a study. They provide simple summaries about the sample 
and the measures. The inferential analysis can be conducted using different approaches. We 
performed an unpaired T-test to determine if the means of two data sets differ significantly from 
each other. We ran the test independently for the datasets corresponding to the three Maxwell 
parameters ( , , ) for normal blood versus heparinized blood (see Figure 5 in the main 𝜂0 𝜂1 𝜏1

manuscript). Moreover, we ran the T-tests at different times as the measurement evolves. The 
results are shown in the table below and show that:

1. The background viscosity  is not significantly different for normal blood and heparinized 𝜂0

blood. But, as time passes, they can be discriminated more clearly.

2. The viscoelastic element ( , ) is significantly different for normal blood and heparinized 𝜂1 𝜏1

blood. At a level of 0.05 significance, the two sets are statistically different from the first 
minute of the measurement. The difference between the two sets gets even larger over time.

ηo Prob >|t| η1 Prob >|t| τ1 Prob >|t|

1min 0.31932 1min 0.03373 1min 0.00376

3min 0.18156 3min 0.00409 3min 4.7146E-4

5min 0.15752 5min 1.0394E-4 5min 6.65002E-5

In addition to the T-test, Figure S6 shows the evolution of the histograms of the viscoelastic 
parameters across the entire population of patients, for the early discrimination of coagulation 
propensity between whole blood and after heparin. This visual presentation also shows that as 
time evolves the distribution for  is still similar for the whole blood and heparinized blood. 𝜂0

However, the viscoelastic element (η1 and τ1) for whole blood starts to evolve with time 
compared to the heparinized ones. 



Figure S6. Distribution of viscoelastic parameters: ‘short term’ evolution within two different 
states (baseline from whole blood & heparinized whole blood).
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