Magnetic Field Induced Alignment of Macroradical Epoxy for Enhanced Electrical Properties

-Supplementary Information -

Ahmed Al-Qatatsheh,^a Jaworski C. Capricho,^a Jitraporn (Pimm) Vongsvivut,^b Mark J. Tobin,^b Saulius Juodkazis,^c Nishar Hameed^{*a}

^a School of Engineering, Swinburne University of Technology, Melbourne VIC 3122, Australia.

^b Infrared Microspectroscopy (IRM) Beamline, ANSTO – Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia.

^c Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

*E-mail: nisharhameed@swin.edu.au, aalqatatsheh@swin.edu.au

Content

Fig. S1: Illustration of the polarized IR microspectroscopy approach, where Θ	
corresponds to the maximum absorbance angle	2
Fig. S2: Quantum Computational Modelling Approach	2
Fig. S3: Monte Carlo Simulation Approach	3
Table S1: Summary of all possible combinations along with binding energy	
curves and minimum energy	4

Fig. S1: Illustration of the polarized IR microspectroscopy approach, where Θ corresponds to the maximum absorbance angle.

Fig. S2: Quantum Computational Modelling Approach

1. 2. 3.	Create rectangular prism-shaped unit cells (i.e., Back- Front, Head-Front, and Head-Back). Define spacing dimensions. Define the unit cell's direction in line with the unit vector of the transition dipole moment.	Preparation of the unit cells		
		Development of a lattice-based model	1. 2. 3. 4. 5.	Create the lattice. Define the required radical density. Define the level of confidence bound (i.e., α =0.05). Define the number of trials per radical density (i.e., 25 trials each). Set the non-nearest neighbor ATEO molecules' interaction energies to zero during the simulation.
1. 2. 3.	Start polymerization at any location within the lattice- based model. Follow Standard Random Walk Algorithm in generating random moves (i.e., sweeps). Generate one move (i.e., sweep) at a time.	Generation of the random polymeric chain		
		Checking of the generated polymeric chain	1. 2. 3.	 Ensure that each move acceptance is based on the standard random walk algorithm. Ensure that the polymeric chain's density should not fall beneath ~0.6 per nm⁻³. Ensure that the consecutive moves could not result in voids in the lattice-based model using the standard random walk
1. 2. 3. 4.	Calculate the average Percolation Span. Calculate the average Radical Density. Calculate Standard Deviation for each trial. Calculate the level of confidence bound.	Generation of the required calculations	4.	Ensure that random translation from an occupied lattice site (i.e., a unit cell) to a neighboring one is attempted while constrained by the direction of the transition dipole moment vector.

Fig. S3: Monte Carlo Simulation Approach

 Table S1: Summary of all possible combinations along with binding energy curves and minimum energy.

				Minimum
S/N	Configuration	Illustration	Binding Energy Curve	Energy
				(kcal mol ⁻¹)
9.0	Head-Back		Public Provide state sta	-121.91
10.0	Head-Edge1		Unstable	N/A
11.0	Heade-Edge2		Unstable	N/A
12.0	Head-Head		Unstable	N/A