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1 Validation of the numerical method 

In this compare the present numerical results with the reported benchmark results on droplet 
dynamics in uniaxial extensional flow 1,2 and uniform electric field3, respectively. The flow 
limits in the above studies correspond to the Stokes regime. To simulate the Stokes flow regime, 
we consider Re=0.01 in our numerical code. In Fig. S1a, we present the influence of extensional 
flow on steady-state droplet deformation for λ=1. Here, the electric field is absent (CaE=0). For 
this study, we have compared our results with the reported numerical results of Stone & Leal 1. 
The droplet deformation is quantified by the parameter D=(L-B)/(L+B), where L and B are the 
half-length of droplet along the z-axis (i.e. outward flow direction) and transverse direction, 
respectively (see the inset of Fig. S1a). With the increase in Ca, the strength of the viscous stress 
as compared to the capillary stress enhances, augmenting the deformation as facilitated by the 
imposed stretching. Evidently, the deformation predicted by our numerical model matches well 
with the numerical results of Stone & Leal 1. In Fig. S1b, we next compare the temporal 
elongation and relaxation of a droplet as obtained from the present simulations with the reported 
experimental results of Ha & Leal 2, considering λ=0.056, and the Capillary number just above 

the critical value i.e. Cac. Here,  *t tG  is the dimensionless time. The flow is stopped at 

L=4.3. From Fig. S1b, it is evident that the evolution of the droplet shape during elongation and 
relaxation (provided in the inset) phases are well predicted by the present numerical model. 
Moreover, an excellent match is observed in terms of the observed breakup modes. However, the 
critical Capillary number found in the present study is slightly higher (Cac=0.194) as compared 
to the experimental value (Cac=0.178). 
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Next, we assess the present numerical model in predicting the droplet deformation in the sole 
presence of electric field. Fig. S2 depicts the deformation (D) as a function of electric capillary 
number (CaE) for (R, S, λ) = (10, 1.37, 1) in the Stokes flow limit. Our numerical simulations 
show prolate deformation (D>0) for this set of fluid properties. An increase in CaE augments the 
relative strength of the electric stress with respect to the capillary stress, which reflects enhanced 

Fig. S2 Deformation parameter as a function of electric capillary number, CaE, for (R, S, λ) 
= (10, 1.37, 1). The value of Reynolds number is taken as Re=0.01. 

Fig. S1  (a) Effect of capillary number, Ca, on the steady-state deformation parameter D for 
λ =1. (b) Transient variation in the droplet half-length L in the presence of extensional flow 
and after the flow is stopped for λ=0.056 and Ca=1.05Cac, where the critical capillary 
number, Cac=0.195. The value of Reynolds number is taken as Re=0.01, both for figures (a) 
and (b). 
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deformation. The results obtained by the numerical model agree very well with the numerical 
results of Lac & Homsy 3, as depicted in Fig. S2.  

2 Grid and domain independence tests 

Throughout our study, we have used a complex grid structure that is refined to level 10 (where 

level m corresponds to a grid size 2 mx z H      ) at the fluid-fluid interface and refined to 
level 6 at far away from the drop. However, during the transient process, the grids near the high 
curvature zone on the interface can be further divided into level 11 due to the implementation of 
curvature-based refinement in the numerical model. Hence, there is non-uniformity in grid size at 
the interface as shown in Fig. 2b of the main text. To conduct the grid independence test, we 
perform simulations using uniform grid refinement levels 10 and 11 at the interface, and 
compare the results with the same obtained by the present grid structure, whereas, the grid size in 
the bulk medium is kept unaltered. Figure S3a shows the evolution of the drop for (R, S, λ) = 
(10,1.37,1), considering Ca=0.12 and CaE=0.3, Re=0.01, taking different grid structures. It can 
be seen that by refining the grid size from level 10 to 11, the transient deformation and the 
breakup mode (provided in the inset) remain nearly unaffected. Therefore, for the sake of 
computational time optimization as well as to capture the evolution of the neck with 
uncompromised accuracy, the present curvature-adaptive grid structure is used. Figure S3b 
depicts the transient length variation considering the previous set of parameters, for two different 
domain sizes: H=15 and H=30 (corresponding widths are W=30 and W=60, respectively). From 
figure S3b, it is clear that increase in the domain size has negligible effect on the transient drop 
dynamics. Hence, for simulation purposes, we have used the domain size H×W=15×30.   

 

 

 

Fig. S3 (a) Transient deformation of the drop for different grid sizes. The inset shows 
comparison between the break-up modes. (b) Effect of domain size on transient deformation. 
The system under consideration is (R, S, λ)=(10, 1.37 ,1). To obtain the bulbous-ended base 
state, (CaE, Ca)= (0.3, 0.12) is taken in pre-relaxation stage. 
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3 Mathematical modeling of necking  

Fig. S4 shows the schematic of a relaxing drop with bulbous ends connecting to a relatively thin 
neck. For theoretical analysis, we consider a cylindrical coordinate system (r, z) with origin at 
the drop center. In Stokes flow limit, the Navier-Stokes in the z-direction is written as 
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Few assumptions and simplifications are made to solve the above equation. The size of the neck 
is assumed to be significantly small compared to drop size i.e. w/L<<1, consequently,  
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the terms with respect to r between point 2 and point 4, we obtain 
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where 
2 4z zu u  . Due to the lack of priori knowledge about  , we take the help of our 

numerical observations to proceed further. In all of the considered cases it is observed that 

 1~ 10O  , thus, by neglecting   in the denominator of eqn (2), one can still get the 

approximate results. Now, to calculate the radial velocity term, we integrate the continuity 
equation, 0z r ru z u r u r       between point 1 and 3, and plugging the results into eqn (2)

, we obtain  

Fig. S4 Schematic of neck present two bulbous ends of a relaxing drop 
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The pressures inside the neck (or meniscus) and at the entrance to the bulbous-ended structures 

can be calculated as  1 ~ 1 1 2n bp R L w   and  2 ~ 1 1 2b bp R w . Approximating the 

bulbous structures as ellipsoids and knowing that the total drop volume is the summation of the 
volume of neck and bulbous structure, the length of semi major axis can be calculated as, 
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