Supporting Information for

Self-Assembled Carbon Dot-Wrapped Perovskites Enable Light Trapping and Defect Passivation for Efficient and Stable Perovskite Solar Cells

Ngoc Duy Pham^{1,2}, Amandeep Singh^{1,2}, Weijian Chen⁴, Minh Tam Hoang^{1,2}, Yang Yang^{1,2}, Xiaodong Wang^{2,3}, Annalena Wolff³, Xiaoming Wen⁴, Baohua Jia⁴, Prashant Sonar^{1,2}, and Hongxia Wang^{1,2 *}

¹ School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia

² Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia

³ Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4001 Australia

⁴Centre for Translational Atomaterials, Swinburne University of Technology, Melbourne, VIC 3122, Australia

Corresponding author:

*E-mail: hx.wang@qut.edu.au

Figure S1. Size and hole mobility of carbon dots (CDs) derived from human hair. (**a**) TEM image. (**b**) hole mobilities of CDs film with varying magnetic field at room temperature.

Figure S2. Schematic diagram of the anti-solvent dripping based synthesis of $Cs_{0.05}FA_{0.80}MA_{0.15}PbI_{2.55}Br_{0.45}$ perovskite films

Figure S3. Statistical performance of PSCs made with various CDs contents (0 – 6 mg/mL):
(a) power conversion efficiencies; (b) open-circuit voltages; (c) current densities; (d) fill-factors.

Figure S4. Hysteresis behaviour of PSCs. Rev and FW scans represent the measurements following the voltage sweeps from open-circuit to short-circuit and from short-circuit to open-circuit condition, respectively.

Figure S5. (a) Specular reflectance and (b) internal quantum efficiency (IQE) spectra of PSCs

Figure S6. J-V characteristics of devices made using antisolvent based on: pure toluene (black curve), 1 mg/mL Poly(9-vinylcarbazole) in toluene (blue curve), 1 mg/mL Poly(9-vinylcarbazole) and 3 mg/mL CDs in toluene (red curve).

Figure S7. Top-view SEM images of control perovskite (**a** and **b**) and CDs-PSK film (**c** and **d**). A statistical evaluation of 200 grains for both images (Figure S7-(**b** and **d**)) shows that the average grain size for the CD-PSK film, $220nm \pm 95$ nm is considerably smaller than that for the control film, $299nm \pm 111$ nm.

Figure S8. Three-dimensional atomic force microscopy images for perovskite film fabricated wit (a) 1 mg/mL and (b) 2 mg/mL Poly(9- vinylcarbazole) in toluene.

Figure S9. (a) Estimated bandgap, and (b) transmission spectra perovskite films

Figure S10. High resolution XPS of (**a**) the Au 4f core level for the Au reference film and (**b**) C 1s core level for the CDs film on deposited on FTO substrate.

Figure S11. High resolution X-ray photoelectron spectroscopy spectra (Al–K α = 1486.6 eV) and fittings of (**a**) I 3d and (**b**) Br 3d core levels for the perovskite films.

Element	Peak position (eV)	Attributed bonding environments				
Control (Fresh)						
C 1s	284.1/286.7/287.9	C-C/C-N/C=N				
Pb 4f	137.9/142.8	Pb ²⁺				
Pb 0	136.2/141.1	Pb ⁰				
I 3d	618.7/630.2	I-				
Br 3d	68.0/69.0	Br				
Control (Ag	ed)					
C 1s	284.1/286.5/288	C-C/C-N/C=N				
Pb 4f	138.1/142.9	Pb ²⁺				
Pb 0	136.3/141.2	Pb ⁰				
I 3d	618.9/630.4	I-				
Br 3d	68.1/69.2	Br				
CDs-PSK (F	CDs-PSK (Fresh)					
C 1s	284.5/285.5/287.9	C=C, C=O/ C=N				
Pb 4f	138.0/142.80	Pb ²⁺				
I 3d	618.80/630.30	I-				
Br 3d	68.0/69.0	Br				
CDs-PSK (Aged)						
C 1s	284.5/285.6/288.0	C=C, C=O/ C=N				
Pb 4f	138/142.8	Pb ²⁺				
I 3d	618.8/630.3	I-				
Br 3d	68.0/69.0	Br				

Table S1. Peak positions of high resolution XPS data.

Figure S12. XRD patterns and corresponding rigid body assisted Rietveld refinement fittings of as-prepared perovskite films. (a) Control; (b) CDs-PSK film; (c) The crystal structure $Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45}$ with 4 MA molecules and 22 FA molecules defined as rigid body allowing their orientation to be refined in their corresponding sub-cell; (d) Realizing of this function in DIFFRAC.TOPAS v6 syntax

Table S2. Fitted results of the XRD patterns demonstrated in **Figure S11**. Phase composition and lattice constant of $Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45}$ perovskite.

Sample	$Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45}$					
	Lattice parameters			Crystallite size (nm)	Phase ratio	s (wt%)
	a (Å)	b (Å)	c (Å)	of Perovskite	Perovskite	PbI ₂
Control	18.882	18.823	18.884	47.16	98.53	1.47
	±0.022	±0.002	±0.022	±0.84	±0.16	±0.16
CDs-PSK	18.882	18.827	18.878	43.07	99.55	0.45
	±0.018	±0.002	± 0.018	±0.70	±0.13	±0.13

Figure S13. Schematic of incident-angle dependent PL

Estimation of penetration depth: In this work, PL was taken at very small incident angle ($\Theta_1 = \sim 0-1^\circ$, nearly vertical to the film surface). The refraction effect was taken into consideration in this estimation process by using Snell's law $\sin\Theta_1 / \sin\Theta_2 = n_2/n_1$, where n_1 , n_2 are reflective index of air (~ 1) and perovskite film (~ 1.7), respectively. The absorption coefficient (α_2) of perovskite thin film at the wavelength of 405 nm is $\sim 2 \times 10^5$ cm⁻¹.¹ Therefore, the penetration depth (δ_d) of the excitation laser (405 nm) in perovskite film is estimated by using the equation, $\delta_d = \cos\Theta_2/\alpha_2 = \sim 50$ nm.

Table S3. Carrier lifetime of control and CDs-PSK film deposited on glass substrate.

Sample	A ₁	τ_1 (ns)	A ₂	τ_2 (ns)	τ_{ave} (ns)

Control	0.87	23.89	0.21	327.16	333.50
CDs-PSK	0.87	19.02	0.20	547.44	549.44

(Where $\tau_{ave} = (A_1 \times \tau_1^2 + A_2 \times \tau_2^2)/(A_1 \times \tau_1 + A_2 \times \tau_2)$

Figure S14. Time-resolved photoluminescence for perovskite films in which the incident light was from the back (glass side).

Figure S15. Time-resolved photoluminescence for perovskite films in contact with chargeseparating layer. (a) SnO₂ (incident light direction was from glass side), (b) Spiro-OMeTAD (incident light direction was from PMMA side).

Figure S16. UPS spectra (He-I α = 21.22 eV) of perovskite film and CDs films.

Figure S17. Nyquist plots of PSCs made using control perovskite (**a**) and CDs-PSK (**b**) measured under various light illumination intensities at open-circuit condition. Equivalent circuit used to fit the impedance spectra (**c**). Extracted recombination resistance versus open-circuit voltage (**d**). Ideality factors extracted from fitting of recombination resistance are 2.05 and 1.83 for control and CDs-PSK based PSCs, respectively.

Figure S18. XRD patterns and corresponding Rietveld refinement fittings of aged perovskite films. (a) Control and (b) CDs-PSK films.

Table S4. Fitted results of the XRD patterns demonstrated in **Figure S17**. Phase composition and lattice constant of $Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45}$ perovskite.

Sample	$Cs_{0.05}FA_{0.8}MA_{0.15}PbI_{2.55}Br_{0.45}$					
	Lattice parameters			Crystallite size (nm)	Phase ratio	s (wt%)
	a (Å)	b (Å)	c (Å)	of Perovskite	Perovskite	PbI ₂
Control_4d	18.874	18.829	18.888	41.46	96.89	3.11
	± 0.008	±0.003	± 0.007	±0.76	± 0.11	±0.11
CDs-	18.876	18.832	18.888	43.19	99.43	0.57
PSK_4d	± 0.007	±0.002	± 0.006	±0.71	±0.15	±015

References

(1) De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.;

Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge

and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters.

2014, *5*, 1035-1039.