Supporting Information

Optimized Electron Occupancy of Solid-Solution Transition Metal

for Suppressing Oxygen Evolution of Li₂MnO₃

Erhong Song, ^{1,a} Yifan Hu, ^{1,a} Ruguang Ma,^{a*} Yining Li, ^a Xiaolin Zhao, ^a Jiacheng Wang, ^a Jianjun

Liu,^{a,b,c*}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

¹ These authors contributed equally to this work. All authors have given approval to the final version of the manuscript.

Corresponding mail: jliu@mail.sic.ac.cn; maruguang@mail.sic.ac.cn

Supporting Data

Fig. S1. Monoclinic (C2/m) and electronic structure of Li-rich layer oxide Li_2MnO_3 . (a) Atomic models of the monoclinic Li_2MnO_3 structure. Green spheres are Li, purple spheres are Mn, and small red spheres are O. (b) Density of states of the fully relaxed Li_2MnO_3 for the 3*d*-orbital of the Mn ion and the 2*p*-orbital of the surrounding O ions. (c) Density of states of the ground state structure of Li_yMnO_3 (y = 1.75, 1.5, 1.25, and 1) determined by the "supercell" software package

Fig. S2. The formation energies of proposed configurations of $\text{Li}_2\text{Mn}_{0.75}\text{TM}_{0.25}\text{O}_3$. The formation energies are calculated as $E_f = E$ (Li₂Mn_{0.75}TM_{0.25}O₃) – E (Li₂Mn_{0.75} $\square_{0.25}\text{O}_3$) – 0.25E (TM) (TM= Nb, Mo, Ru and Rh, \square = TM vacancy).

Fig. S3. The optimized structure of Li_yMnO_3 (y = 1.75, 1.5, 1.25, and 1) determined by the "supercell" software package.

Fig. S4. The optimized structure of $Li_yMn_{0.75}Nb_{0.25}O_3$ (y = 1.75, 1.5, 1.25, and 1) determined by the "supercell" software package.

Fig. S5. The optimized structure of $Li_yMn_{0.75}Mo_{0.25}O_3$ (y = 1.75, 1.5, 1.25, and 1) determined by the "supercell" software package.

Fig. S6. The optimized structure of $Li_yMn_{0.75}Rh_{0.25}O_3$ (y = 1.75, 1.5, 1.25, and 1) determined by the "supercell" software package.

Fig. S7. Calculated density of states of $t_{2g}(d_{xy}, d_{yz}, d_{xz})$, $e_g(d_{x2-y2}, d_{x2})$ of Mo-4*d* and Ru-4*d* orbital and O atoms-2*p* orbital of Li_yMn_{0.75}TM_{0.25}O₃ during the Li extraction (TM= Mo, Ru; y = 2, 1.5 and 1).

Fig. S8. Calculated projected density of states of the ground state structure of $Li_2Mn_{0.75}TM_{0.25}O_3$ system (TM= Nb, Mo, Ru, Rh).

Fig. S9. Calculated projected density of states of the ground state structure of $Li_yMn_{0.75}TM_{0.25}O_3$ system in delithiation process (TM= Nb, Mo, Ru and Rh; y = 2, 1.75, 1.5, 1.25, and 1).

Fig. S10. Calculated projected density of states of t_{2g} (d_{xy} , d_{yz} , d_{xz}) and e_g (d_{x2-y2} , d_{x2}) of Nb-4*d* orbital of Li_yMn_{0.75}Nb_{0.25}O₃ during the Li extraction (y = 2, 1.75, 1.5, 1.25, and 1).

Fig. S11. Calculated projected density of states of t_{2g} (d_{xy} , d_{yz} , d_{xz}) and e_g (d_{x2-y2} , d_{x2}) of Mo-4*d* orbital of Li_yMn_{0.75}Mo_{0.25}O₃ during the Li extraction (y = 2, 1.75, 1.5, 1.25, and 1).

Fig. S12. Calculated projected density of states of t_{2g} (d_{xy} , d_{yz} , d_{xz}) and e_g (d_{x2-y2} , d_{x2}) of Ru-4*d* orbital of Li_yMn_{0.75}Ru_{0.25}O₃ during the Li extraction (y = 2, 1.75, 1.5, 1.25, and 1).

Fig. S13. Calculated projected density of states of t_{2g} (d_{xy} , d_{yz} , d_{xz}) and e_g (d_{x2-y2} , d_{x2}) of Rh-4*d* orbital of $\text{Li}_y \text{Mn}_{0.75} \text{Rh}_{0.25} \text{O}_3$ during the Li extraction (y = 2, 1.75, 1.5, 1.25, and 1).

Fig. S14 (a) XRD patterns of Li_2MnO_3 (black line) and $Li_2Mn_{0.75}Ru_{0.25}O_3$ (red line). Rietveld refinement XRD pattern of Li_2MnO_3 (b) and $Li_2Mn_{0.75}Ru_{0.25}O_3$ (c) , respectively.

Fig. S15. SEM image of Li₂MnO₃.

Fig. S16. SEM image of $Li_2Mn_{0.75}Ru_{0.25}O_3$.

Fig. S17. Survey XPS spectra of Li₂MnO₃ and Li₂Mn_{0.75}Ru_{0.25}O₃, respectively.

Fig. S18. Survey XPS spectra of Li₂Mn_{0.75}Ru_{0.25}O₃.

Sample	а	b	с	α	β	γ	V
Li ₂ MnO ₃	4.928	8.530	5.025	90	109.204	90	199.484
$Li_2Mn_{0.75}Ru_{0.25}O_3$	4.982	8.623	5.089	90	109.138	90	206.538

Table S1 The lattice parameters of $\mathrm{Li}_2 MnO_3$ and $\mathrm{Li}_2 Mn_{0.75} Ru_{0.25}O_3$ compound.