Supporting Information for

Low-Crystallinity Mesoporous NiGaFe Hydroxide Nanosheets on Macroporous

Ni Foam for High-Efficiency Oxygen Evolution Electrocatalysis

Shi Feng Zai, ‡ An Qi Dong, ‡ Jian Li, Zi Wen, Chun Cheng Yang, * Qing Jiang*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China

^{*} *Corresponding authors. Tel.:* +86-431-85095371; *Fax:* +86-431-85095876; *E-mails: ccyang@jlu.edu.cn (C. C. Yang); jiangq@jlu.edu.cn (Q. Jiang).*

[†] Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

[‡] These authors contributed equally to this work.

Materials and methods

Materials: Nickel nitrate hexahydrate $[Ni(NO_3)_2 \cdot 6H_2O]$ was purchased from Sinopharm Chemical Reagent Co., Ltd. Gallium nitrate hydrate $[Ga(NO_3)_3 \cdot xH_2O]$, ferric nitrate nonahydrate $[Fe(NO_3)_3 \cdot 9H_2O]$ and potassium hydroxide (KOH) were obtained from Shanghai Aladdin Biochemical Technology Co. Ltd. Highly purified N₂ and O₂ were supplied by Changchun Juyang Gas Co. Ltd.

Catalyst Preparation: Before electrodeposition, the Ni foam (NF) support was pre-cleaned with 5 M HCl for 20 min to remove the surface nickel oxides layer, and then rinsed with water and ethanol and dried in a vacuum drying oven for further use. Subsequently, electrodeposition was carried out in a three-electrode system using the above cleaned NF as the working electrode, Ag/AgCl (saturated KCl solution) as the reference electrode and a graphite rod as the counter electrode, respectively. In a typical procedure, NF support was first subjected to an ultrasonic pretreatment for 600 s to ensure the electrolyte permeation, where the electrolyte bath contained 25 mM $Ga(NO_3)_3 x H_2O_2$, 22.5 mM Ni(NO₃)₂·6H₂O and 2.5 mM Fe(NO₃)₂·9H₂O. The Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF was synthesized through a potentiostatic electrodeposition at -1.0 V vs. Ag/AgCl at 5 °C for 500 s. After electrodeposition, the resulting electrode was carefully washed with water and ethanol and dried in a vacuum drying oven, obtaining the Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF electrode. In order to investigate the effect of Fe content on OER catalytic activity, three comparative electrodes were prepared by regulating the molar ratios of Ni, Ga, Fe nitrate salts (5:5:0, 4.8:5:0.2, and 4:5:1) using a similar procedure to that described for $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$ (the corresponding molar ratio is 4.5:5:0.5). Note that these electrodes are labeled herein based on the actual molar ratios determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). For comparisons, different crystalline-degrees were obtained by the post-annealing treatment of as-obtained Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF at 300 and 500 °C (denoted as $T_a = 300$ °C and $T_a = 500$ °C).

Material Characterization: The morphology and structure characterizations were carried out on a field-emission scanning electron microscope (SEM, JSM-6700F, JEOL, 15 kV) and a transmission electron microscope (TEM, JEM-2100F, JEOL, 200 kV). The chemical composition analysis was examined by a JSM-6700F equipped with an energy-dispersive X-ray spectrum (EDS). X-ray diffraction (XRD) patterns were recorded on a D/max2500pc diffractometer using Cu Ka radiation. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo ESCALAB-250 spectrometer with a monochromatic Al-Ka source. Raman spectra were obtained on a micro-Raman spectrometer (Renishaw) with a laser of 532-nm excitation wavelength at 0.2 mW. Fourier transform infrared spectroscopy (FTIR) measurements were performed by using an FTIR spectroscopy (6800-50/NEXUS, Thermo Nicolet, USA). ICP-OES (Jobin-Yvon) was carried out to evaluate the ratios of metal elements. The nitrogen adsorption and desorption measurements were conducted on a Micromeritics ASAP 2020 analyzer to obtain the specific area and pore size distribution.

Electrochemical Measurements: Electrochemical measurements were carried out in oxygen-saturated 1 M KOH electrolyte at room temperature. The electrocatalytic processes were performed in a typical three-electrode system with the as-prepared samples as the working electrode, Ag/AgCl (saturated KCl solution) as the reference electrode, a graphite rod as the counter electrode. To circumvent the possible influence of Fe impurities on catalytic performance, the KOH electrolyte was purified by homemade Ni(OH)₂ sediments according to previous work.¹ Electrochemical impedance spectroscopy (EIS) was performed under an initial potential of 1.5 V *vs*. reversible hydrogen electrode (RHE) while sweeping the frequency from 100 kHz to 10 mHz and maintaining an AC amplitude of 10 mV. The polarization curve was performed at a scan rate of 1 mV s⁻¹ and the potential was calibrated and converted to a RHE scale by $E(vs. RHE) = E(vs. Ag/AgCl) + 0.197 + 0.059 \times pH$. Moreover, a gas chromatograph [GC-2014 equipped with a thermal conductivity detector (TCD) and a 5 Å Molecular sieve column] was utilized to determine Faradic efficiencies during the OER processes.

Computational Method: All calculations were performed by spin-polarized DFT in the Dmol3 code of the Materials Studio 2017 software.² The generalized gradient approximation with Perdew-Burke-Ernzerhof functional (GGA-PBE)³ was applied to describe the exchange correlation effects. DFT semicore pseudopotentials core treatment with the basis set of double numerical plus polarization (DNP) was implemented for relativistic effects.⁴ The periodic structure was created with a 20 Å vacuum slab to avoid the artificial interaction effect between the slab and their mirror images, and a $1\times3\times1$ Monkhorst-Pack K-point was sampled in the Brillouin zone. Grimme method for DFT-D correction was applied to describe the van der Waals forces.⁵ For geometry relaxation, the convergence criteria of energy change, gradient, and the displacement were set to be 1.0×10^{-5} Ha, 1.05×10^{-3} Ha Å⁻¹, and 9.4×10^{-3} Å, respectively. The bottom two layers were fixed and considered as a bulk structure. The geometrical configurations and charge density difference plots were illustrated with VESTA software.⁶

The computational hydrogen electrode (CHE) model was used to obtain the free energies.⁷ The reference potential was set to be reversible hydrogen electrode (RHE),⁸ where the chemical potential of the proton-electron pair was determined by one-half of chemical potential of H₂. In alkaline conditions, the OER process occurs *via* four elementary steps:

$$* + OH^{-} \rightarrow OH^{*} + e^{-}: \Delta G_{1}$$
(1)

$$OH^* + OH^- \rightarrow O^* + H_2O + e^-: \Delta G_2$$
⁽²⁾

$$O^* + OH^- \to OOH^* + e^-: \Delta G_3 \tag{3}$$

$$OOH^* + OH^- \rightarrow O_2 + H_2O + e^- + *: \Delta G_4$$
(4)

The reaction free energy (ΔG) was determined by the difference between the total energy of products and reactants at each step. As a result, the theoretical overpotential η can be obtained from the Gibbs free energy as follows: $\eta = \max[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4]/e - 1.23[V]$.

Supplementary Figures

Fig. S1 Photographs of (a) NF support and (b) $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$.

Fig. S2 Low-magnification SEM images of (a) NF support and (b) $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$.

Fig. S3 FTIR spectra of Ni_{0.58}Ga_{0.42}, Ni_{0.67}Ga_{0.31}Fe_{0.02}, Ni_{0.65}Ga_{0.30}Fe_{0.05} and Ni_{0.51}Ga_{0.37}Fe_{0.12}.

Fig. S4 SEM images of $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$.

Fig. S5 Cyclic voltammetry curves in the non-Faradaic region at various scan rates for (a) $Ni_{0.58}Ga_{0.42}/NF$, (b) $Ni_{0.67}Ga_{0.31}Fe_{0.02}/NF$, (c) $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$ and (d) $Ni_{0.51}Ga_{0.37}Fe_{0.12}/NF$.

Fig. S6 The calculated ECSA values of $Ni_{0.58}Ga_{0.42}/NF$, $Ni_{0.67}Ga_{0.31}Fe_{0.02}/NF$, $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$ and $Ni_{0.51}Ga_{0.37}Fe_{0.12}/NF$.

Fig. S7 XRD patterns of as-prepared and annealed (at 300 and 500 °C) Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF.

Fig. S8 Polarization curves of as-prepared and annealed (at 300 and 500 °C) $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$ in 1 M KOH.

Fig. S9 (a) Nyquist plots of as-prepared and annealed (at 300 and 500 °C) $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$. (b) The corresponding charge transfer resistance (R_{ct}) and solution resistance (R_{s}). The inset in (a) shows an equivalent electrical circuit diagram.

Fig. S10 XRD patterns of the as-prepared and post-OER samples.

Fig. S11 Fe 2p XPS spectra of the as-prepared and post-OER samples.

Fig. S12 Ga 3d XPS spectra of the as-prepared and post-OER samples.

Fig. S13 Ni 2p XPS spectra of the as-prepared and post-OER samples.

Fig. S14 O1s XPS spectra of the as-prepared and post-OER samples.

Fig. S15 Raman spectra of the as-prepared and post-OER samples.

Fig. S16 Differential charge density plots of NiGaFeOOH during the OER process. Yellow and blue areas represent electronic excess and depletion, respectively.

Fig. S17 Differential charge density plots of NiOOH during the OER process. Yellow and blue areas represent electronic excess and depletion, respectively.

	\mathbf{O}		
Catalysts	10 mA cm ⁻²	$(mV dec^{-1})$	Ref.
$Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$	200	42	This work
FeCoW oxy-hydroxides/Au	191	/	Ref. ⁹ of the text
S-NiCoFe LDH	206	46	Ref. ¹⁰ of the text
CoFePi/Ni(PO ₃) ₂ /CC	213	39	Ref. ¹¹ of the text
FeNiO/CC	218	47	Ref. ¹² of the text
Co _{0.8} Fe _{0.2} OOH@C	254	33	Ref. ¹³ of the text
NiVIr-LDH	180	38	Ref. ¹⁴ of the text
NiFeRu-LDH	225	32	Ref. ¹⁵ of the text
MoFe:Ni(OH) ₂ /NiOOH	240	47	Ref. ¹⁷ of the text
Ni-Fe hydroxides	270	36	Ref. ²¹ of the text
e-ICLDH@GDY/NF	216	44	Ref. ⁴⁵ of the text
$W_{0.5}Co_{0.4}Fe_{0.1}/NF$	250	32	Ref. ⁴⁶ of the text
NiFe/NF	215	28	Ref. ⁵⁴ of the text
NiCo LDH nanosheets	367	40	9
W-Ni(OH) ₂	237	33	10
NiFe-LDH	348	/	11
NiV LDH	318	50	12
Fe-doped β -Ni(OH) ₂	219	53	13
NiFe-LDHNS@DG10	210	52	14
CCS Ni-Co Nw	302	44	15
P-FeNiO/CNS	220	52	16
Ag@Co(OH) _x /CC	250	76	17
NiTe/NiS	209	49	18
Fe-doped NiO _x nanosheets	310	49	19
CoZn(20:1)-P-NS@NF	209	52	20
NF@NC-CoFe ₂ O ₄ /C NRAs	240	45	21
Ni(OH) ₂ -NP	260	79	22
NiFe LDH@NiCoP/NF	220	49	23
Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P	215	60	24
F-CoOOH/NF	270	54	25
NiCoON	247	35	26
F _{0.25} C ₁ CH/NF	228	42	27
Fe _{17.5%} -Ni ₃ S ₂ /NF	214	42	28
Mn_3N_2	270	101	29
Fe/Ni/Mn _{0.4} -MIL-53/NF	238	71	30
Co _{1.75} Al _{1.25} O ₄	248	84	31
Fe ₃ Co ₂ Al ₂ -AE	284	100	32
(Ni ₂ Co ₁) _{0.925} Fe _{0.075} -MOF	257	41	33
Co ₃ O ₄ /CeO ₂ NHs	270	60	34

Table S1 Comparisons of overpotentials at 10 mA cm⁻² and Tafel slopes among $Ni_{0.65}Ga_{0.30}Fe_{0.05}/NF$ and most of reported OER electrocatalysts in 1 M KOH.

Fe-Ni ₃ C-2%	275	62	35
YRCO-560	250	34	36
NP Au/CoMoN _x	237	46	37
NiSe ₂ /CoSe ₂ -N	286	53	38
V-CoP@a-CeO ₂	225	58	39
Fe-CoP/CoO	219	52	40
Fe _{0.33} Co _{0.67} OOH PNSAs	266	30	41
NiCo@NiCoO2/C PMRAs	339	84	42
NiFe-UMNs	260	30	43
S NiN _x -PC/EG	280	45	44
Fe _{0.09} Co _{0.13} -NiSe ₂	251	63	45
NiFeMo	238	35	46
CoV-UAH	250	44	47
CeO_x/CoO_x	313	66	48
NiNO ₀₊₁₅	300	74	49
CoV2O6-V2O5/NRGO-1	239	50	50
Mn@Co _x Mn _{3-x} O ₄	246	46	51
EO Co ₃ Mo/Cu	220	82	52
fcc-NiFe@NC	226	41	53
N-CoFe LDHs/NF	233	40	54
mesoporous Ni _{0.8} Fe _{0.2} film	206	64	55
FeNi-LDH/Ti ₃ C ₂ -MXene	298	43	56
CoOOH-NS	253	87	57
Ni-Fe LDH HNPs	280	49	58
CoGa LDH	258	34	59
CoFe LDH nanosheets	232	36	60

Notes and references

- J.-S. Sun, Y.-T. Zhou, R.-Q. Yao, H. Shi, Z. Wen, X.-Y. Lang, Q. Jiang, J. Mater. Chem. A, 2019, 7, 9690-9697.
- 2 B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.
- 3 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 4 B. Delley, *Phys. Rev. B*, 2002, **66**, 155125.
- 5 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 6 F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129-138.
- J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov, U.
 Stimming, J. Electrochem. Soc., 2005, 152, J23.
- J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Norskov, *ChemSusChem*, 2015, **8**, 2180-2186.
- 9 H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Nano Lett., 2015, 15, 1421-1427.
- 10 J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang, P. An, S. Liu, S. T. Lee, T. Ma, *Nat. Commun.*, 2019, **10**, 2149.
- F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze,
 I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. Araujo, M.
 Gliech, D. Teschner, J. Zhu, W. X. Li, J. Greeley, B. R. Cuenya, P. Strasser, *Nat. Commun.*, 2020, 11, 2522.
- 12 K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, *Nat. Commun.*, 2016, 7, 11981.
- 13 T. Kou, S. Wang, J. L. Hauser, M. Chen, S. R. J. Oliver, Y. Ye, J. Guo, Y. Li, ACS

Energy Lett., 2019, 4, 622-628.

- Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan,
 G. Qian, J. Zou, A. Du, X. Yao, *Adv. Mater.*, 2017, 29, 1700017.
- 15 S.-H. Bae, J.-E. Kim, H. Randriamahazaka, S.-Y. Moon, J.-Y. Park, I.-K. Oh, *Adv. Energy Mater.*, 2017, 7, 1601492.
- 16 Z. Liu, B. Tang, X. Gu, H. Liu, L. Feng, Chem. Eng. J., 2020, 395, 125170.
- 17 Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng, X. Han, W. Hu, Angew. Chem. Int. Ed., 2020, 59, 7245-7250.
- 18 Z. Xue, X. Li, Q. Liu, M. Cai, K. Liu, M. Liu, Z. Ke, X. Liu, G. Li, *Adv. Mater.*, 2019, **31**, e1900430.
- 19 G. Wu, W. Chen, X. Zheng, D. He, Y. Luo, X. Wang, J. Yang, Y. Wu, W. Yan, Z. Zhuang, X. Hong, Y. Li, *Nano Energy*, 2017, **38**, 167-174.
- X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai, D.
 Yu, *Energy Environ. Sci.*, 2017, 10, 893-899.
- 21 X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, *Adv. Mater.*, 2017,
 29, 1604437.
- 22 C. Luan, G. Liu, Y. Liu, L. Yu, Y. Wang, Y. Xiao, H. Qiao, X. Dai, X. Zhang, ACS Nano, 2018, **12**, 3875-3885.
- H. J. Zhang, X. P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer,
 A. W. Maijenburg, R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- X. Zhang, J. Li, Y. Yang, S. Zhang, H. Zhu, X. Zhu, H. Xing, Y. Zhang, B. Huang,
 S. Guo, E. Wang, *Adv. Mater.*, 2018, **30**, e1803551.

- 25 P. Chen, T. Zhou, S. Wang, N. Zhang, Y. Tong, H. Ju, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 2018, 57, 15471-15475.
- 26 Y. Li, L. Hu, W. Zheng, X. Peng, M. Liu, P. K. Chu, L. Y. S. Lee, *Nano Energy*, 2018, 52, 360-368.
- 27 L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang, Y. Li, Adv. Energy Mater., 2018, 8, 1800175.
- 28 G. Zhang, Y.-S. Feng, W.-T. Lu, D. He, C.-Y. Wang, Y.-K. Li, X.-Y. Wang, F.-F. Cao, ACS Catal., 2018, 8, 5431-5441.
- C. Walter, P. W. Menezes, S. Orthmann, J. Schuch, P. Connor, B. Kaiser, M. Lerch,
 M. Driess, *Angew. Chem. Int. Ed.*, 2018, 57, 698-702.
- 30 F. L. Li, Q. Shao, X. Huang, J. P. Lang, Angew. Chem. Int. Ed., 2018, 57, 1888-1892.
- X. Wang, P. Sun, H. Lu, K. Tang, Q. Li, C. Wang, Z. Mao, T. Ali, C. Yan, *Small*, 2019, 15, e1804886.
- 32 Y. Sun, Y. Xia, L. Kuai, H. Sun, W. Cao, M. Huttula, A. P. Honkanen, M. Viljanen,
 S. Huotari, B. Geng, *ChemSusChem*, 2019, 12, 2564-2569.
- 33 Q. Qian, Y. Li, Y. Liu, L. Yu, G. Zhang, Adv. Mater., 2019, 31, e1901139.
- 34 Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan, L. Gu, D. Xu, J. Bao, Z. Dai, Adv. Mater., 2019, 31, e1900062.
- 35 H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem. Int. Ed., 2017, 56, 12566-12570.
- 36 M. Kim, B. Lee, H. Ju, S. W. Lee, J. Kim, Adv. Mater., 2019, 31, e1901977.

- 37 R. Q. Yao, H. Shi, W. B. Wan, Z. Wen, X. Y. Lang, Q. Jiang, *Adv. Mater.*, 2020,
 32, e1907214.
- 38 X. Zheng, X. Han, Y. Cao, Y. Zhang, D. Nordlund, J. Wang, S. Chou, H. Liu, L. Li, C. Zhong, Y. Deng, W. Hu, *Adv. Mater.*, 2020, **32**, e2000607.
- 39 L. Yang, R. Liu, L. Jiao, Adv. Funct. Mater., 2020, 30, 1909618.
- 40 X. Hu, S. Zhang, J. Sun, L. Yu, X. Qian, R. Hu, Y. Wang, H. Zhao, J. Zhu, Nano Energy, 2019, 56, 109-117.
- S. H. Ye, Z. X. Shi, J. X. Feng, Y. X. Tong, G. R. Li, *Angew. Chem. Int. Ed.*, 2018, 57, 2672-2676.
- 42 H. Xu, Z. X. Shi, Y. X. Tong, G. R. Li, Adv. Mater., 2018, 30, e1705442.
- 43 G. Hai, X. Jia, K. Zhang, X. Liu, Z. Wu, G. Wang, *Nano Energy*, 2018, 44, 345-352.
- 44 Y. Hou, M. Qiu, M. G. Kim, P. Liu, G. Nam, T. Zhang, X. Zhuang, B. Yang, J. Cho, M. Chen, C. Yuan, L. Lei, X. Feng, *Nat. Commun.*, 2019, 10, 1392.
- 45 Y. Sun, K. Xu, Z. Wei, H. Li, T. Zhang, X. Li, W. Cai, J. Ma, H. J. Fan, Y. Li, *Adv. Mater.*, 2018, **30**, e1802121.
- 46 F. Qin, Z. Zhao, M. K. Alam, Y. Ni, F. Robles-Hernandez, L. Yu, S. Chen, Z. Ren,
 Z. Wang, J. Bao, ACS Energy Lett., 2018, 3, 546-554.
- 47 J. Z. Liu, Y. F. Ji, J. W. Nai, X. G. Niu, Y. Luo, L. Guo, S. H. Yang, *Energy Environ. Sci.*, 2018, **11**, 1736-1741.
- J.-H. Kim, K. Shin, K. Kawashima, D. H. Youn, J. Lin, T. E. Hong, Y. Liu, B. R.
 Wygant, J. Wang, G. Henkelman, C. B. Mullins, *ACS Catal.*, 2018, 8, 4257-4265.

- 49 J. Huang, Y. Sun, X. Du, Y. Zhang, C. Wu, C. Yan, Y. Yan, G. Zou, W. Wu, R. Lu, Y. Li, J. Xiong, *Adv. Mater.*, 2018, 30, e1803367.
- 50 F.-C. Shen, Y. Wang, Y.-J. Tang, S.-L. Li, Y.-R. Wang, L.-Z. Dong, Y.-F. Li, Y. Xu, Y.-Q. Lan, ACS Energy Lett., 2017, 2, 1327-1333.
- 51 C. Hu, L. Zhang, Z. J. Zhao, J. Luo, J. Shi, Z. Huang, J. Gong, *Adv. Mater.*, 2017, 29, 1701820.
- 52 H. Shi, Y. T. Zhou, R. Q. Yao, W. B. Wan, X. Ge, W. Zhang, Z. Wen, X. Y. Lang,
 W. T. Zheng, Q. Jiang, *Nat. Commun.*, 2020, 11, 2940.
- 53 C. Wang, H. Yang, Y. Zhang, Q. Wang, Angew. Chem. Int. Ed., 2019, 58, 6099-6103.
- 54 Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, *Adv. Funct. Mater.*, 2018, 28, 1703363.
- 55 M. Yao, N. Wang, W. Hu, S. Komarneni, *Appl. Catal. B: Environ.*, 2018, 233, 226-233.
- 56 M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Nano Energy, 2018, 44, 181-190.
- 57 J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, S. Zhang, *Energy Environ. Sci.*, 2019, **12**, 739-746.
- 58 L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X. W. D. Lou, *Angew. Chem. Int. Ed.*, 2018,
 57, 172-176.
- 59 J. Zhang, C. Dong, Z. Wang, H. Gao, J. Niu, Z. Peng, Z. Zhang, *Small Methods*, 2018, 3, 1800286.
- 60 R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Adv. Mater., 2017, 29, 1701546.