Supporting Information

Effect of Mg²⁺ Substitution on Photocatalytic Water Splitting Activity of LaMg_xNb_{1-x}O_{1+3x}N_{2-3x}

Jeongsuk Seo^{1,2}, Daisaku Ishizuka³, Takashi Hisatomi¹, Tsuyoshi Takata¹, and Kazunari Domen^{1,4,*}

- ¹ Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan;
- ² Department of Chemistry, College of Natural Sciences, Chonnam National University, 77
 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- ³ Department of Chemical System Engineering, School of Engineering, The University of Tokyo,
 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- ⁴ Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- * Corresponding author: domen@shinshu-u.ac.jp

	Atomic ratio ^{a)}					
	La	Mg	Nb			
LaNbON ₂	1.00	-	1.09			
$LaMg_{1/3}Nb_{2/3}O_2N$	1.00	0.34	0.68			

Table S1. Bulk elemental compositions for the synthesized LaNbON₂ and LaMg_{1/3}Nb_{2/3}O₂N photocatalysts, prepared by thermal nitridation of the corresponding oxides at 1123 K for 8 h.

^{a)} Determined by ICP-OES analysis.

Figure S1. Photoelectron spectra in air acquired from $LaMg_xNb_{1-x}O_{1+3x}N_{2-3x}$ series with x = (a) 0, (b) 0.10, (c) 0.20, (d) 0.33, (e) 0.40 and (f) 0.50, prepared by thermal nitridation of the corresponding oxides at 1123 K for 8 h. The intersection of the background and yield lines indicates the valence band maximum (VBM) potential for each compound.

Figure S2. Mott-Schottky (MS) plots for bare LaMg_xNb_{1-x}O_{1+3x}N_{2-3x} electrodes with x = 0 and 0.33 at pH 13 at a frequency of 1 kHz. Pt wire and Ag/AgCl electrodes were used as a counter and reference electrodes, respectively. The measurements were carried out in an Ar-saturated 0.5 M potassium borate (KBi) aqueous electrolyte under dark condition. The MS plots were recorded by cathodically sweeping the potential with an AC amplitude of 15 mV.

Figure S3. Gas evolution during water splitting on 0.2 g portions of RhCrO_y-CoO_z/LaMg_xNb₁. _xO_{1+3x}N_{2-3x} photocatalysts with x = (a) 0, (b) 0.1, (c) 0.2, (d) 0.33, (e) 0.4 and (f) 0.5, and (g) a blank trial without a catalyst. Data were acquired in a top-irradiation-type reaction vessel including 150 mL of pure water under 300 W Xe lamp irradiation (λ >380 nm). The oxynitride surfaces were modified with 0.2 wt% RhCrO_y and 0.1 wt% CoO_z as cocatalysts for H₂ and O₂ evolution, respectively.

Figure S4. Narrow-scan Nb 3d and N 1s XPS spectra obtained from $LaMg_{1/3}Nb_{2/3}O_2N$ particles (a) before and (b) after water splitting reaction.

Mg ²⁺ contents	Surface N/Nb ratio	Fractions of surface Nb species				
		Nb ⁵⁺ /Nb _{total}	Nb ⁴⁺ /Nb _{total}	Nb ³⁺ /Nb _{total}	(Nb ⁴⁺ +Nb ³⁺)/Nb _{total}	
0	-	0.23	0.25	0.52	0.77	
0.2	-	0.32	0.29	0.40	0.68	
0.33	1.39	0.39	0.30	0.31	0.61	
0.33, after reaction	1.41	0.39	0.31	0.30	0.61	
0.4	-	0.47	0.31	0.21	0.52	
0.5	-	0.73	0.26	0.00	0.26	

Table S2. Surface compositions of $LaMg_xNb_{1-x}O_{1+3x}N_{2-3x}$ photocatalysts with x = 0, 0.20, 0.33, 0.40 and 0.50 as determined from the Nb 3d and N 1s XPS spectra in Figure 5 and Figure S4.

Figure S5. Gas evolution during water splitting on 0.24 g portions of RhCrO_y-CoO_z/LaMg_{1/3}Nb_{2/3}O₂N catalysts in a top-irradiation-type reaction vessel including 150 mL of pure water and 0.2 g La₂O₃ under visible light irradiation (300 W Xe lamp; λ >420 nm). The oxynitride surfaces were modified with 0.6 wt% RhCrO_y and 0.3 wt% CoO_z as cocatalysts for H₂ and O₂ evolution, respectively. After a 5 h reaction the vessel was evacuated and another 5 h reaction was carried out in the same manner.