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Fig. S1 (a) Differential scanning calorimetry (DSC) thermograms of polymer and composite 
electrolyte films before and after curing. A large exothermic peak was observed for the uncured 
film. After curing, the exothermic peak disappeared, indicating completion of the crosslinking 
reaction. (b) Infrared spectrum of cured polymer electrolyte film, indicating that all NH2 groups 
have reacted, and likely all NH groups. The broad stretching vibrations of OH and NH begin to 
overlap in the 3370 cm-1 to 3400 cm-1 regions. 
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(a) Unconnected 
discrete particles

(b) Interconnected 
ceramic network  
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Fig. S2 SEM images showing the morphology differences between (a) densely packed but 

unconnected discrete LICGCTM particles and (b) partially sintered and interconnected LICGCTM 

ceramic network. 
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Fig. S3 Tetraethylene glycol dimethyl ether (TEGDME) uptake of the polymer and composite 

electrolyte membranes as a function of time. The thinner composite membranes with less than 100 

µm thickness reached saturated uptake within 10 min. The thicker pristine polymer membrane 

reached saturated uptake in 1 hour.  
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Fig. S4 Representative Nyquist plot of dry (a) and TEGDME plasticized (b) polymer and 

composite electrolyte membranes at 30 ℃, with stainless steel blocking electrodes. 
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Fig. S5 Ionic conductivity of composite electrolyte membrane containing 50 wt% LICGC (dry 

weight) as a function of inverse temperature. Black curve, dry membrane; red curve, plasticized 

with TEGDME; and blue curve, plasticized with dimethyl carbonate (DMC). Similar conductivity 

was observed in the two plasticizers. 
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Fig. S6 Details of Li+ transference number measurements. (a,b), EIS (a) and polarization (b) of 

film with 0 wt% ceramic loading. (c, d), EIS (c) and polarization (d) of film with 50 wt% ceramic 

loading. 

 


