Supporting Information

Interface Engineering with AlO_x dielectric layer enabling an ultrastable Ta_3N_5 photoanode for photoelectrochemical water

oxidation

Yongle Zhao^{a, b}, Guiji Liu^{a, b}, Hong Wang^{a, b}, Yuying Gao^{a,b}, Tingting Yao^a, Wenwen Shi^{a, b}, Can Li^{*a}

a. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, P. R. China. E-mail: canli@dicp.ac.cn

b. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

*Corresponding author. E-mail address: canli@dicp.ac.cn (Prof. Can Li)

Fig. S1 a) Current density of Ta_3N_5 photoanodes modified with different thickness of AlO_x layer at 1.23 V vs. RHE under AM 1.5G simulated sunlight at 100 mW cm⁻² in the 1 M NaOH aqueous solution (pH = 13.6). b) Current-potential curves of Ta_3N_5 , Ta_3N_5 -AlO_x-25 photoanodes at 1.23V vs. RHE under AM 1.5G simulated sunlight at 100 mW cm⁻² in the 1 M NaOH aqueous solution (pH = 13.6).

Fig. S2 a) XPS spectra of Al 2p for Ta₃N₅-AlO_x photoanode. b) XPS spectra of O 1s for Ta₃N₅-AlO_x photoanode.

Fig. S3 Cyclic voltammogram measurements for NiFeO_x cocatalyst on FTO under scan rates of 20, 50, 100 mV s⁻¹ in 1 M NaOH aqueous solution (pH = 13.6).

Fig. S4 Chronoamperometry measurement of Ta_3N_5 -AlO_x-Fh-NiFeO_x photoanode under AM 1.5G simulated sunlight at 1.23V in 1 M NaOH aqueous solution (pH = 13.6).

Fig. S5 a) The SEM image of Ta_3N_5 -AlO_x-Fh-NiFeO_x photoanode. b) The SEM image of Ta_3N_5 -AlO_x-Fh-NiFeO_x photoanode after stability test for 10min.

Fig. S6 a) Cyclic voltammogram measurements for CeO_x film on FTO under scan rates of 20, 50, 100 mVs⁻¹. b) Light transmittance test for CeO_x film on FTO.

Fig. S7 ICP-OES analysis of NaOH solution before and after J-t measurement.

Fig. S8 Oxygen evolution measurement of the Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanode at 1.23 V in 1 M NaOH aqueous solution (pH = 13.6).

Fig. S9 a) The SEM image of Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanode. b) The SEM image of Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanode after stability test for 120 hours.

Fig. S10 Topography and CPD map of the Ta_3N_5 and Ta_3N_5 -AlO_x photoanodes with different bias voltage in the dark.

Fig. S11 a) \triangle CPD values as a function of bias voltage applied to the tip. b) SPV responses of Ta₃N₅, Ta₃N₅-AlO_x photoanodes.

Kelvin probe force microscopy was also performed to further clarify the role of AlO_x layer. Different bias voltage of -1, 0, and 1 V were applied at the atomic force microscopy (AFM) tip in dark (Fig. S7) and contact potential difference (CPD) can be detected. Fig. S11a shows Δ CPD value of the sample with AlO_x layer is significantly lower than that of reference sample by about 400 mV, which shows that the interface trap states can be passivated. Δ CPD increased for both the samples at a bias of +1 V and -1 V, but the change rate is higher for control samples. In addition, Δ CPD value tends to be saturated after AlO_x layer modification, rather than fluctuating obviously with bis voltage changes. This indicates that the trap states of samples seem to be less sensitive to the electric field with AlO_x dielectric layer. Accordingly, the AlO_x dielectric layer can effectively passivate trap states of Ta₃N₅ photoanode, which corresponds to the result in Fig. 3. This also confirmed by surface photovoltage spectroscopy (SPV) measurement results. As shown in Fig. S11b, the SPV response of Ta₃N₅-AlO_x photoanode is significantly higher than that of pristine one.

Fig. S12 Chopped light chronoamperometry measurements of Ta_3N_5 (black curve), Ta_3N_5 -AlO_x (blue curve), Ta_3N_5 -AlO_x-Fh (green curve) photoanodes in the 1 M NaOH aqueous solution (pH = 13.6). The potential is scanned from 0.45 to 1.45 V vs. RHE with a 0.1 V step and with a 60 s light on/off cycle on each step.

Fig. S13 The applied bias photon-to-current efficiency (ABPE) of Ta_3N_5 , Ta_3N_5 -AlO_x, Ta_3N_5 -AlO_x-Fh, Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanodes.

Fig. S14 The corresponding dark current and chopped light chronoamperometry measurement of Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x at 1.23 V in 1 M NaOH solution.

Fig. S15 IPCE curves of Ta_3N_5 , Ta_3N_5 -AlO_x, Ta_3N_5 -AlO_x-Fh, Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanodes at 1.23 V in 1 M NaOH solution.

Fig. S16 Current-potential curves of Ta_3N_5 , Ta_3N_5 -AlO_x, Ta_3N_5 -Fh, Ta_3N_5 -AlO_x-Fh, Ta_3N_5 -AlO_x-Fh, Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanodes in 1 M NaOH-0.5M H₂O₂ solution.

Fig. S17 XPS spectra of Al 2p for Ta_3N_5 -AlO_x photoanode through oxygen production test.

Fig. S18 Current-potential curves of Ta_3N_5 -AlO_x-NiFeO_x, Ta_3N_5 -AlO_x-Fh-NiFeO_x photoanodes in 1 M NaOH-0.5M H₂O₂ solution.

Fig. S19 XPS spectra of Fe 2p and Ni 2p for NiFeO_x.

Fig. S20 The high-resolution cross section SEM characterizations with EDX mapping of the Ta_3N_5 -AlO_x-Fh-NiFeO_x-CeO_x photoanode.

Ref. 1
1
2
3
4
is work

Table S1 Representative Ta_3N_5 based photoanode systems

References

- Y. Li, L. Zhang, A. Torres-Pardo, et al. Nature Communications, 2013, 4, 2566.
 G. Liu, S. Ye; P. Yan, et al. Energy & Environmental Science, 2016, 9, 1327.
 Y. Pihosh, T. Minegishi, V. Nandal, et al. Energy & Environmental Science, 2020, 5, 1519.
 Y. Xiao, C. Feng, J. Fu, et al. Nature Catalysis, 2020, 3, 932.