Supporting Information for

Coupling Hierarchical Iron Cobalt Selenide Arrays with N-doped Carbon as Advanced Anodes for Sodium Ion Storage

Peijia Wang,^a Jiajie Huang,^a Jing Zhang,^a Liang Wang,^a Peiheng Sun,^a Yefeng Yang,^{*a, b} and Zhujun Yao^{*a}

^aSchool of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

^bMOE Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Email address: <u>vangyf@zstu.edu.cn</u> (Dr. Y. Yang), <u>vaozj@zstu.edu.cn</u> (Dr. Z. Yao)

Tel: +86-571-8684 5569

Fig. S1. HRTEM image of FeCo-Se anode in the core region.

Fig. S2. Typical SAED pattern of FeCo-Se anode.

Fig. S3. SEM images of (A) Co-Se, (B) FeCo-Se-1.5, (C) FeCo-Se-2, and (D) FeCo-Se-3.

Fig. S4. XRD patterns of Co-Se, FeCo-Se-1.5, FeCo-Se-2, and FeCo-Se-3.

Fig. S5. The linear relationship between the practical Fe contents of (Fe/Fe+Co) in products and the feeding Fe contents in the starting materials for the samples.

Fig. S6. (A, B) Typical low- and high-magnification SEM images of the iron selenide arrays, and (C) cycling stability of the iron selenide electrode tested at 0.5 A g^{-1} .

Fig. S7. The cycling performances of the Co-Se, FeCo-Se-1.5, FeCo-Se-2, and FeCo-Se-3 tested at 0.5 A g^{-1} .

Fig. S8. CV curves of (A) Co-Se and (B) FeCo-Se anodes at a scan rate of 0.1 mV s⁻¹, and first five discharge–charge curves of (C) Co-Se and (D) FeCo-Se anodes at 0.5 A g⁻¹.

Fig. S9. Comparative CV curves for the FeCo-Se@NC, N-doped carbon on carbon cloth and bare carbon cloth tested at a scan rate of 1.0 mV s^{-1} .

Fig. S10. (A) Low- and (B) high-magnification SEM images of the FeCo-Se@NC electrode after cycling.

Fig. S11. (A) EIS spectra of the FeCo-Se@NC electrode after different cycles measured at discharged state of 0.5 V, and (B) the corresponding relationship of Z' versus $\omega^{-1/2}$.

Fig. S12. N₂ adsorption-desorption isotherms of the FeCo-Se@NC sample tested at 77 K for the evaluation of specific surface area.

Fig. S13. (A) SEM image of $Na_3V_2(PO_4)_3/C$ cathode, (B) XRD pattern of $Na_3V_2(PO_4)_3/C$ cathode, (C) rate capability and (D) cycling stability of the $Na_3V_2(PO_4)_3/C$ cathode (1C = 0.374 A g⁻¹).

Fig. S14. First five charge-discharge curves of the full cell tested at 0.5 A g^{-1} without presodiation.