Supporting Information

Alkaline-earth Metal Substitution Stabilizes Anionic Redox of Li-rich Oxides

Haoxin Li^{ab}, Xiaolin Zhao^{ac}, Yining Li^{ac}, Yang Gan^{ac}, Wujie Qiu*^{ac}, Jifen Wang*^b, and Jianjun Liu*^{acd}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China

^bSchool of Science, College of Art and Science, Shanghai Polytechnic University, 2360 Jinhai Road, Shanghai 201209, China

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^dSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, 1 Sub-lane Xiangshan, Hangzhou, 310024, China

*Email: jliu@mail.sic.ac.cn; wjqiu1988@gmail.com; wangjifen@sspu.edu.cn

Calculation Details

The average voltage can be calculated from the free energy of the delithiation reaction:

$$V(x_1, x_2) = \frac{E(Li_{x1}Mg_{0.5}MnO_3) - E(Li_{x2}Mg_{0.5}MnO_3) - (x_1 - x_2)E(Li)}{(x_1 - x_2)F}$$

$$(x_1 > x_2)$$

where $E(Li_{x1}Mg_{0.5}MnO_3)$ and $E(Li_{x2}Mg_{0.5}MnO_3)$ are the DFT energies (T = 0 K). E(Li) is the DFT energy (T = 0 K) with bulk Li metal as the reference state. F is the Faraday constant. The oxygen vacancy formation energy can be used to determine the structural stability of O₂ loss in $Li_{1.5-x}Mg_{0.5}MnO_3$ during delithiation.

$$\Delta E_{vac} = E \left(Li_{1.5 - x} Mg_{0.5} MnO_{3 - \delta} \right) + \delta/2\mu(O_2) - E \left(Li_{1.5 - x} Mg_{0.5} MnO_3 \right)$$

where $E(\text{Li}_{1.5-x}\text{Mg}_{0.5}\text{MnO}_{3-\delta})$ represents the energy of $\text{Li}_{1.5-x}\text{Mg}_{0.5}\text{MnO}_3$ to remove the O atom (with the highest oxidation state was selected as the defect site), and $\mu(O_2)$ represent the chemical potential of oxygen at 300 K and 1 atm. The Crystal Orbital Hamilton Populations (COHP) analysis was performed using the Lobster program. The relative formation energy is used to evaluate the stability of $\text{Li}_{3-x}\text{Mg}_x\text{TMO}_4$ and $\text{Li}_3\text{Mg}_x\text{TM}_{1-x}\text{O}_4$ (TM=V, Nb):

$$\Delta H = \frac{E(Li_{3-x}Mg_{x}TMO_{4}) - (E(Li_{3}Mg_{x}TM_{1-x}O_{4}) + \frac{x}{2}E(TM_{2}O_{5}) - \frac{x}{2}E(Li_{2}O) - x\mu(O_{2}))}{n}$$

where $E(TM_2O_5)$ and $E(Li_2O)$ are the ground state of TM_2O_5 and Li_2O compounds, respectively. $E(Li_{3-x}Mg_xTMO_4)$ and $E(Li_3Mg_xTM_{1-x}O_4)$ are the total energy of the generated material, and $\mu(O_2)$ uses the chemical potential at temperature (300 K) and pressure (1 atm). Further, their free energy differences are computed through the formula of $\Delta G_f = \Delta H_f - \Delta S^*T$ (T=300K).

The average charge state of atoms at the same site is calculated through $\bar{v} = n_{valence} - \bar{n}_{mag}$, in which $n_{valence}$ and \bar{n}_{mag} are valence electron number and average magnetic moment number of atoms at the same site.

Supplementary Tables

Compounds	Total Energy (eV/atom)
E(Li ₂ CO ₃)	-6.19
E(MnCO ₃)	-7.86
E(MgO)	-5.99
$\mu(CO_2)$	-7.74
μ(O ₂)	-5.16

 Table S1. Calculated energies (0K) and chemical potentials (300K) of the reference substances.

Mg concentration (%)	Mg-substituted-Li	Total Energy (eV/atom)
3.125	$Li_{31}Mg_1Mn_{16}O_{48}$	-18.58
6.250	$Li_{30}Mg_2Mn_{16}O_{48}$	-18.62
9.375	$Li_{29}Mg_{3}Mn_{16}O_{48}$	-18.66
12.500	$Li_{28}Mg_4Mn_{16}O_{48}$	-18.70
18.750	$Li_{26}Mg_6Mn_{16}O_{48}$	-18.77
25.000	$Li_{24}Mg_8Mn_{16}O_{48}$	-18.84
28.125	$Li_{23}Mg_9Mn_{16}O_{48}$	-18.89

Table S2. Total energies of Mg-substituting-Li compounds with the different substitution concentrations.

Mg concentration (%)	Mg-substituted-Li with Li vacancy	Total Energy (eV/ atom)
3.125	$Li_{30}Mg_{1}Mn_{16}O_{48}$	-18.43
6.250	$Li_{28}Mg_2Mn_{16}O_{48}$	-18.30
9.375	$Li_{26}Mg_{3}Mn_{16}O_{48}$	-18.18
12.500	$\mathrm{Li}_{24}\mathrm{Mg}_{4}\mathrm{Mn}_{16}\mathrm{O}_{48}$	-18.06
18.750	$Li_{20}Mg_{6}Mn_{16}O_{48}$	-17.82
25.000	$\mathrm{Li}_{16}\mathrm{Mg}_8\mathrm{Mn}_{16}\mathrm{O}_{48}$	-17.57
28.125	$Li_{14}Mg_9Mn_{16}O_{48}$	-17.46

Table S3. Total energies of Mg-substituting-Li and Li-vacancy compounds with the different substitution concentrations.

Mg concentration (%)	Mg-substituted-Mn	Total Energy (eV/atom)
6.250	Li ₃₂ Mg ₁ Mn ₁₅ O ₄₈	-18.33
12.500	$Li_{32}Mg_2Mn_{14}O_{48}$	-18.11
18.750	Li ₃₂ Mg ₃ Mn ₁₃ O ₄₈	-17.88
25.000	$Li_{32}Mg_4Mn_{12}O_{48}$	-17.66
37.500	$Li_{32}Mg_6Mn_{10}O_{48}$	-17.22
50.000	$Li_{32}Mg_8Mn_8O_{48}$	-16.78
56.250	$Li_{32}Mg_9Mn_7O_{48}$	-16.55

Table S4. Total energies of Mg-substituting-Mn and Mn-vacancy compounds with the different substitution concentrations.

Configuration of	Total margy (Natam)	Relative energy(eV/atom)	
$Li_{1.5}Mg_{0.5}MnO_3$	Total energy (ev/atom)		
\mathbf{S}_1	-18.8647	0.0000	
S_2	-18.8422	0.0225	
S_3	-18.8272	0.0375	
S_4	-18.7181	0.1466	
S_5	-18.7050	0.1597	
S_6	-18.6031	0.2616	

Table S5. Total energies of the 6 lowest energy structures of $Li_{1.5}Mg_{0.5}MnO_3$.

Configuration of		Relative energy(eV/atom)	
Li _{1.25} Mg _{0.5} MnO ₃	Total energy (eV/atom)		
S_1	-18.2013	0.0000	
S_2	-18.2009	0.0003	
S_3	-18.1950	0.0063	
S_4	-18.0806	0.1206	
S_5	-17.9544	0.2469	
S_6	-17.8625	0.3388	

Table S6. The total energy of the 6 lowest energy structures of $Li_{1.25}Mg_{0.5}MnO_3$.

Configuration of Li _{1.0} Mg _{0.5} MnO ₃	Total energy (eV/atom)	Relative energy(eV/atom)
S ₁	-17.5766	0.0000
S_2	-17.5738	0.0028
S_3	-17.5734	0.0031
S_4	-17.5281	0.0484
S_5	-17.4953	0.0813
S_6	-17.4822	0.0944

Table S7. The total energy of the 6 lowest energy structures of $Li_{1.0}Mg_{0.5}MnO_3$.

Configuration of	Total anarow (Natam)	Relative energy(eV/atom)	
$Li_{0.625}Mg_{0.5}MnO_3$	Total energy (ev/atom)		
\mathbf{S}_1	-16.4588	0.0000	
S_2	-16.4434	0.0153	
S_3	-16.4359	0.0228	
S_4	-16.4216	0.0372	
S_5	-16.3966	0.0622	
S_6	-16.3956	0.0631	

Table S8. The total energy of the 6 lowest energy structures of $Li_{0.625}Mg_{0.5}MnO_3$.

Configuration of	Total aparau (Natam)	Relative total
Li _{0.375} Mg _{0.5} MnO ₃	Total energy (ev/atom)	energy(eV/atom)
\mathbf{S}_1	-15.6619	0.0000
S_2	-15.6491	0.0128
S_3	-15.6394	0.0225
S_4	-15.6331	0.0288
S_5	-15.5638	0.0981
\mathbf{S}_{6}	-15.5472	0.1147

Table S9. The total energy of the 6 lowest energy structures of $Li_{0.375}Mg_{0.5}MnO_3$.

		_
Configuration of	$\mathbf{T}_{\mathbf{A}}$	Relative total
$Li_{0.25}Mg_{0.5}MnO_3$	Total energy (ev/atom)	energy(eV/atom)
\mathbf{S}_1	-15.2538	0.0000
S_2	-15.2534	0.0003
S_3	-15.2434	0.0103
S_4	-15.2403	0.0134
S_5	-15.2206	0.0331
S ₆	-15.2175	0.0363

Table S10. The total energy of the 6 lowest energy structures of $Li_{0.25}Mg_{0.5}MnO_3$.

	Compound	Reversible capacity (mAh/g)	Reference	
		120	J. Electrochem. Soc., 2012, 159, A781	
		128	Electrochem. Commun., 2004, 6, 1085	
$L_{12}MnO_{3}$	115	Chem. Mater., 2015, 27, 3456		
		115	This work	
	Li Ma MaO	260	J. Power Sources, 2016, 330, 37	
$L1_{1.98}$ $V1g_{0.01}$	$L1_{1.98}$ $W1g_{0.01}$ $W100_3$	245	This work	

Table S11. The reversible capacity of Li_2MnO_3 and Mg-doped Li_2MnO_3 reported in the literature.

Tupo	O-O bond length (Å)	O-O bond length (Å)	O-O bond length (Å)
Туре	(Mg-O-Li & Mg-O-Li)	(Li-O-Li & Mg-O-Li)	(Li-O-Li & Li-O-Li)
Li _{1.5} Mg _{0.5} MnO ₃	2.880	2.631	2.718
$Li_{1.25}Mg_{0.5}MnO_3$	2.844	2.545	2.570
$Li_1Mg_{0.5}MnO_3$	2.791	2.505	1.445
$Li_{0.625}Mg_{0.5}MnO_3$	2.717	2.441	1.348
$Li_{0.375}Mg_{0.5}MnO_{3}$	2.741	2.422	1.323
$Li_{0.25}Mg_{0.5}MnO_3$	2.681	1.440	1.309

Table S12. The bond length changes of different O-O bonding types during the delithiation process.

Compound	Element	Average magnetic moment	Average valence state
MgO	Mg	0.00	+2.00
	О	0.00	-2.00
Li ₂ MnO ₃	Mn	3.15	+3.85
	О	0.06	-1.94
Li _{1.5} Mg _{0.5} MnO ₃	Mn1	3.20	+3.80
	Mn2	3.85	+3.15
	Mg	0.01	+1.99
	Ο	0.03	-1.97

 Table S13. Magnetic moment and valence state of atoms at same site in the three compounds.

Table S14. Relative formation energies were calculated for the substitution of the Li and TM sitesby Mg in $Li_{2.125}Mg_{0.875}VO_4$ and $Li_{2.125}Mg_{0.875}NbO_4$.

Compounds	Relative formation energy (eV/atom)	
V	-0.417	
Nb	-0.401	

Supplementary Figures

Figure S1. The formation energy of $Li_{1.5}Mg_{0.5}MnO_3$ as a function of temperature and pressure.

Figure S2. The change in the valence state of Mn ions in the state of increasing Mg proportion was obtained from the magnetic moment.

Figure S3. The pDOS of Mn and O in the O octahedra of Li_2MnO_3 (a) and $Li_{1.5}Mg_{0.5}MnO_3$ (b).

Figure S4. The pCOHP results for Mn-O bonds of $Li_{1.5}Mg_{0.5}MnO_3$ and Li_2MnO_3 . Above zero is the bonding state and below zero is the anti-bonding state.

Figure S5. The TDOS and pDOS of LMO and LMMO are based on spin-up and spin-down, and the pDOS is based on 3d orbitals of TM atoms and 2p orbitals of O atoms.

Figure S6. Formation energy of oxygen vacancy during delithiation at 0 K, 300 K, 450 K, 600K and 800 K respectively.

Figure S7. The reversible and irreversible regions in Li_2MnO_3 are based on thermodynamics: oxygen vacancy formation energy (blue solid line) at $\Delta E_vac=0$ (black dashed line), $x \approx 0.48$ is the boundary between the reversible and irreversible regions.

Figure S8. The Mean Square Displacement of Li and O in LiMnO₃ and $Li_{0.5}Mg_{0.5}MnO_3$ in (T=300K).

Figure S9. The pDOS of Li_{2-x}MnO₃ (*x*=0, 0.25, 0.5).

Figure S10. The Bader charge changes of oxygen and Mn ions during the delithiation.

Figure S11. The calculated average oxidation state of Mn and O atoms as a function of delithiation (*x* in $Li_{1.5-x}Mg_{0.5}MnO_3$). Two Mn-ions with linear and perpendicular distributions of 2(Mn-O-Mg) present different charge states of +3.8 (Mn1) and +3.15 (Mn2), respectively.